
Accepted Manuscript

New Gradient-Spatial-Structural Features for Video Script Identification

Palaiahnakote Shivakumara, Zehuan Yuan, Danni Zhao, Tong Lu, Chew Lim

Tan

PII: S1077-3142(14)00185-4

DOI: http://dx.doi.org/10.1016/j.cviu.2014.09.003

Reference: YCVIU 2175

To appear in: Computer Vision and Image Understanding

Received Date: 11 December 2013

Accepted Date: 8 September 2014

Please cite this article as: P. Shivakumara, Z. Yuan, D. Zhao, T. Lu, C.L. Tan, New Gradient-Spatial-Structural

Features for Video Script Identification, Computer Vision and Image Understanding (2014), doi: http://dx.doi.org/

10.1016/j.cviu.2014.09.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cviu.2014.09.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.cviu.2014.09.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.cviu.2014.09.003

1

New Gradient-Spatial-Structural Features for Video Script

Identification

aPalaiahnakote Shivakumara, bZehuan Yuan, cDanni Zhao, bTong Lu and cChew Lim Tan
aFaculty of Computer Science, University of Malaya, Kuala Lumpur, Malaysia

bNational Key Lab for Novel Software Technology, Nanjing University, Nanjing, China
cDepartment of Computer Science, School of Computing, National University of Singapore

ahudempsk@yahoo.com, bzhyuan001@gmail.com, blutong@nju.edu.cn, ctancl@comp.nus.edu.sg

Abstract

Multi-script identification helps in automatically selecting an appropriate OCR when video has several

scripts; however, script identification in video frames is challenging because low resolution and

complex background of video often cause disconnections or the loss of text information. This paper

presents a novel idea that integrates the Gradient-Spatial-Features (GSpF) and the Gradient-Structural-

Features (GStF) at block level based on an error factor and the weights of the features to identify six

video scripts, namely, Arabic, Chinese, English, Japanese, Korean and Tamil. Horizontal and vertical

gradient values are first computed for each text block to increase the contrast of text pixels. Then the

method divides the horizontal and the vertical gradient blocks into two equal parts at the centroid in

the horizontal direction. Histogram operation on each part is performed to select dominant text pixels

from respective subparts of the horizontal and the vertical gradient blocks, which results in text

components. After extracting GSpF and GStF from the text components, we finally propose to

integrate the spatial and the structural features based on end points, intersection points, junction points

and straightness of the skeleton of text components in a novel way to identify the scripts. The method

is evaluated on 970 video frames of six scripts which involves font, font size or contrast variations,

and is compared with an existing method in terms of classification rate. Experimental results show that

the proposed method achieves 83.0% average classification rate for video script identification. The

method is also evaluated by testing on noisy images and scanned low resolution documents,

illustrating the robustness and the extensibility of the proposed gradient-spatial-structural features.

Keywords- Video text blocks, Gradient blocks, Dominant video text pixels, Gradient-Spatial-

structural-features, Video script identification

1. Introduction

Due to the advancement of IT technology and the increase in the usage of video that is delivered via

TV broadcasting, Internet and wireless networks, the size of video database is increasing drastically

nowadays [1-4]. In order to enable users to locate their interested content in such enormous quantity of

video data quickly, there must be powerful indexing, retrieval and summarization techniques. In this

regard, the current methods proposed in the field of content based image retrieval are not much

2

effective for a large video database especially for retrieving and labeling video events, which requires

high level semantics but not only low level features [5]. Since content based image retrieval methods

are not effective in bridging the gap between high level semantics and low level features, text

detection, script identification and recognition have come into play with the objective of filling the gap

with the help of Optical Character Recognizer (OCR). In this way, text detection and recognition helps

in generating meaning that is close to the content of video. Thus, text information can be used

effectively for video labeling or events retrieval [1-5].

Text detection and recognition is a familiar problem for the document analysis community where

researchers detect and extract text information from scanned document images with a high resolution.

Since a document image contains plane or homogenous background with a high resolution, text

detection based on connected component analysis is a successful technique in this field [6, 7].

However, the same method cannot be used for detecting and extracting text from natural scene images

because of complex background, font, font size variations and color bleeding [4, 7].

To solve this problem, several methods [8-13] have been proposed in the literature based on bottom up

analysis or region segmentation. However, these methods still enjoy the high resolution of text which

gives high clarity and visibility compared to background. These methods expect directly or indirectly

the complete shape of the character or consider the character as one component. Hence the methods

depend much on connected component analysis. Thus, these methods may not be used directly on

video for text detection and recognition because video suffers from both low resolution and complex

background, which often cause disconnections, the loss of information, distortion, etc. It is evident that

these methods [14, 15] have so far achieved the character recognition rates only between 60% to 72%.

This poor accuracy is due to the complex background, for example, usually sports video contains scene

texts embedded in complex background with greenery, buildings, advertisements, etc. In addition,

video usually contains two types of texts: graphics text which is superimposed and scene text which is

a part of the image. Since graphics text is the edited one, it is easy to process and we can expect good

clarity and visibility, whereas scene text is unpredictable due to the variations in its characteristics.

Further, graphic text is useful for news video analysis while scene text is useful for navigation

applications, such as assisting blind people, vehicle tracking, assisting tourists, sports events

extraction, and exciting events extraction. [1-4]. The presence of both such texts in video makes the

problem more complex and challenging compared to text detection and recognition from either natural

scene images or scanned images. In the same way, experimental results shows that when we apply

conventional character recognition methods directly on video, the character recognition rate is

achieved typically from 0% to 45% [16, 17], which is much lower than the recognition rate of scene

text in natural scene images. The poor accuracy is because of the presence of both graphics and scene

texts, low resolution and complex background. Note that although we can see lots of cameras with a

high resolution for capturing images and video, low resolution cameras are still required in many real

life applications such as mobile services and surveillance systems because of the shortage of memory,

3

battery power, computation power or even operating cost that limits to capture relatively low

resolution [18, 19]. Therefore, text extraction and recognition from video is still challenging and thus

has become an emerging area for researchers.

To address the problems of video, several methods have been proposed in the past years. These

methods can be classified widely as follows: connected component-based [6, 20], texture-based [21-

24], and gradient or edge based methods [25-28]. Although these methods achieve a good accuracy for

text detection or text block detection irrespective of fonts, font sizes, types of text and orientations,

they do not have the ability to differentiate multi-script frames in video because the goal of these

methods was to detect text block or text region regardless of scripts.

Similarly, we can see scene text recognition from natural scene images [29-31] and from video [16, 17,

32, 33], which takes the output of text detection, such as text region, blocks, lines, words and

characters as the input for recognition. Generally, these methods take care of segmentation and

binarization of text areas/blocks with the help of enhancement criteria to increase the contrast of text

lines before feeding them to OCR [34]. Most of the methods either use publicly available OCR for

binarization or their own classifier to recognize text in video. However, these methods are limited to a

single script frame in video/image but not video containing multi-scripts because the extracted features

and OCR are usually designed for a specific language. In addition, there is no universal OCR for

recognizing different scripts in video since it is a hard task. Therefore, without script identification that

helps automatically choosing appropriate OCR, there will be a big gap between text detection and

recognition. Thus script identification is essential when the environment is of multi-script and multi-

lingual like in Singapore, Malaysia and India, where we can see more than two official languages.

Script identification for a given document image with plain background at block level, text line level

and word level in the field of document analysis and recognition has attained high recognition rates

[35-38]. In contrast to document images, script identification in video frame is a new topic and is

challenging as it suffers from low resolution, complex background and font variation as mentioned

above. Besides, the presence of multi-scripts in a video frame makes script identification and

recognition more complex and challenging for researchers. As noted from the methods on script

identification in document images [39, 40], Japanese, Korean, Chinese and Tamil scripts worsen the

performances of the methods in terms of classification rate because the scripts share common features.

Therefore, there is a great demand for developing a new method for automatically identifying scripts

in video frames irrespective of text orientation, font variation, font size variation and contrast. In this

work, we consider six scripts, namely, Arabic, Chinese, English, Japanese, Korean and Tamil since

these languages represent a wide range of users in the world and are very popular.

2. Related Work

Identification of different scripts in a document with plain background and a high resolution is a

familiar problem in document analysis. In this regard, we can see a lot of methods in the literature. An

4

overview of script identification methodologies based on structure and visual appearance is presented

in [35]. It is noted from this review that the surveyed methods work well for camera-based images but

not for video frames since the latter has a low contrast and complex background, and the surveyed

methods are developed specifically for camera based documents. The rotation invariant features for

automatic script identification are proposed by Tan [36] based on Gabor filter. This work considers six

scripts for identification. Since texture feature is sensitive to font or font size variations, the method

may not work well for video text script identification. Busch et al. [37] have explored the combination

of wavelet and Gabor features to identify scripts. However, these approaches expect a large number of

training samples to achieve a good classification rate. In addition, the number of samples for training

limits the ability to work on more scripts. Lu and Tan [38] have proposed a method for script

identification in noisy and degraded document images based on document vectorization. This method

considers the features based on zonalization and connected component analysis because its target is

camera based documents but not video images. Moreover, the use of coding in the method is sensitive

to disconnections and complex background. Although the method is tolerant to various types of

document degradations, it does not perform well for Tamil because of the complexity of the script.

Texture features based on Gabor filter and Discrete Cosine Transform are used for script identification

at word level in many methods [41-43], which expect high contrast documents for the segmentation of

words and rely on connected component analysis to achieve a good accuracy. However, connected

component analysis requires the knowledge of the shape of a character. Extracting the exact shape of a

character is hard in case of video scripts. Similarly, the studies on character shape for identifying

scripts are proposed in [44, 45]. These methods perform well as long as segmentation works well and

character shape is preserved. Since scanned documents and camera based images have a high

resolution, the shape of a character can be preserved with binarization methods. However, the same is

not true for video because of low resolution, complex background and the existence of scene text.

Online script identification is addressed in [46], where spatial and temporal information is used to

recognize words and text lines. Online recognition is easier than offline recognition because online

features can easily extract strokes without much noise and distortion as in offline documents. Recently,

composite script identification and orientation detection for Indian text images have been proposed by

Ghosh and Chaudhuri [47]. This method considers eleven scripts for identification purpose. The

features presented in this work are derived from the connected component analysis. These features are

good only if the connected components preserve their shapes; however, it is not clear how it works for

video script lines. Bashir and Quadri [48] proposed a method for identification of Kashmir script in a

bilingual document image using profile based features. As we know that horizontal and vertical

projection profile based features work well for document images with plane background, and are

sensitive to noise and background. Therefore, this method may not be suitable for video script

identification. Rani et al. [49] proposed a method for script identification of pre-segmented multi-font

characters and digits using texture feature and gradient features with the SVM classifier. This method

5

first segments characters from a document and then extracts features on character level for identifying

scripts. Texture feature is good when we give more characters, say at least words. This method aims at

script identification from a scanned document with simple background. Ferrer et al. [50] explored

Local Binary Pattern (LBP) for script identification at line level. The LBP features are extracted based

on zonalization of text line. Zonalization or dividing the whole text line into blocks is good for

scanned document images with plane background but not for the text line with complex background

where it is hard to find zones. The SVM classifier has been used for identification, but the use of a

classifier probably limits the flexibility of the method.

Based on the literature review on script identification in both scanned document images and camera

based images, it is observed that most of the methods used Roman and Devanagiri as the common

scripts and a few methods consider other scripts for identification purpose [43]. In addition, the main

focus of these methods is that the identification of the scripts in documents with plain background and

a high contrast but not the scripts in video. To the best of our knowledge, the work on video script

identification is not well reported in the literature. For instance, a method which is relevant to our

work, takes the detected text lines as the input and uses statistical and texture features with the k-

nearest neighbor classifier to identify Latin and Ideographic texts in images and videos [51]. Since the

appearance patterns of English and Chinese scripts differ, the method proposes statistical features at

line level, and extracts the features based on zonalization. This zonalization is good for captions and

high contrast text lines, but not for the video text lines that are embedded in complex background or

have a low contrast. Therefore, this method works well for English and Chinese but not other scripts.

In addition, its performance depends on samples training by the classifier and zonalization. Similarly,

recently, another method for video script identification has been proposed at word level using Zernike

moments, Gabor and gradient features [52]. This method extracts features based on the orientation of

Gabor filter and gradients, hence it is sensitive to rotation, different resolutions and scaling. The

method considers only three scripts, namely, Bengali, English and Hindi. In summary, the method

extracts a huge number of features and passes those features to the SVM classifier to identify the

scripts and to improve the classification rate. However, the method cannot be used for identifying

other scripts directly and its performance depends on the segmentation of words. It is evident from the

method proposed in [53] for script identification at word level where the method explores gradient

angular features. Experimental results show that segmenting words from Chinese, Japanese and

Korean scripts is hard because of the uncertainty in defining space between the words and the

characters compared to Arabic, English and Tamil. Therefore, they manually segment the words for

script identification. Hence, we can conclude that the segmentation is language dependent.

We have proposed new features, namely, smoothness and cursiveness at text lines without classifiers

for video script identification [54]. The smoothness and cursiveness are studied based on the angle

information determined by Principal Component Analysis (PCA) through giving coordinates of

thinned text line at different zones. Finally, the K-NN with K=1 classifier is used for script

6

identification. This method considers only English, Chinese and Tamil scripts and it is noted from the

experimental results that the features are not good enough to handle more scripts present in video

frames. To overcome the problem reported in [54], we have also proposed a method based on Spatial-

Gradient-Features for the identification of six scripts at frame level in [55], in which it was shown that

the gradient-spatial features have the ability to discriminate six scripts. It was a preliminary work to

test the idea for identifying scripts using spatial domain based features. However, it was shown

through the experimental results that spatial based features alone were not sufficient to achieve a good

accuracy for a large database. To overcome this limitation, in this work, we extend the method to

integrate Gradient-Spatial-Features with Gradient-Structural-Features in a novel way by calculating

weights based templates for identifying the six scripts to achieve a better accuracy than the work

presented in [55]. In addition to this, it is shown that this soft integration method can be extended to

other images like natural scenes and scanned documents in addition to robust and noise to some extent.

Thus, the current work is more comprehensive and general comparing to the existing method [55].

In summary, this work aims at solving script identification in video by proposing a new soft

integration of gradient-spatial-structural-features. The novelty of the proposed method lies in the

following unique aspects in comparison with the existing approaches: (i) The method does not rely any

segmentation algorithm to segment text lines, words and characters (local information) to identify the

script. Instead it uses blocks (global information) that contain a few words of different fonts, font size,

contrast and orientation. As it is noted from the method [53], segmentation is not a smooth operation

for the scripts like Chinese, Japanese and Korean due to the uncertainty in defining the space between

words. (ii) The method uses a new way of using horizontal and vertical gradient information to extract

candidate text components, which will help in enhancing the low contrast text information that is

challenging as shown in [55]. (iii) The method uses the features based on end points, intersection

points and junction points which are invariant to rotation, scaling and translation, and hence work well

for low contrast video images. (iv) The method integrates spatial and structural features with the

flexibility of changing weights determination, allowing the proposed method to be extended to more

scripts or other datasets with few modifications. In other words, despite the fact that the proposed

features are low-level image representations, the ways we extract the features, such as the spatial

features with dominant points, the structural features with flexible rules, and the soft integration with

flexible weights determination as mentioned above, behave like high-level image representations. This

is the insight and the strength of the proposed work.

3. The Proposed Methodology

As discussed in the introduction section, we can find several sophisticated methods for text block

detection and text region detection in video frames in the literature. These methods work well for texts

from arbitrary orientations, low contrast texts, complex background and more important multi-scripts

frames in video. For this work, we propose to use our earlier text detection method [56] to detect text

7

blocks from video frames. This method explores wavelet-moments features with mutual nearest

neighbor clustering to identify the blocks. According to the results reported in [56], the method gives a

good precision for text block classification. We are inspired by the work presented in [57-59] for text

recognition from natural scene images, where the authors propose a multiple hypotheses framework

for text detection and recognition without segmenting text lines, words and characters. Instead, they try

to use multiple hypotheses at component level for recognizing text in video. The main reason to

recognize text without segmentation is that recognition accuracy should not rely on a segmentation

method, namely, independent of segmentation errors because segmenting words or text lines exactly is

hard from natural scene images. The same thing is true for video, which is much more difficult

compared to natural scene text images. Therefore, in this work, we use a method that detects text at

block level but not at text line or word level. The method detects text blocks in video frames

irrespective of font variations, font size, background and orientation variations, and most importantly,

it detects texts without discriminating different scripts in video frames. In other words, the text

detection method detects almost all the texts blocks in the input frame regardless of scripts and hence

if we combine all the text blocks, the result is as good as text detection results of the whole input

frame. If any text block is missed then it can be restored with the help of boundary growing and the

edge image of the input frame as proposed in [60], which detects text blocks and then integrates all the

text blocks to get exact text lines. The proposed angle projection growing boundary restores text

information at line level if any text is missed. Therefore, the current work aims to identify the scripts

for the given input text blocks of different scripts. This method splits the whole 256×256 video frame

into 16 blocks of size 64×64, and studies wavelet-moments and the mutual nearest neighbor concept as

mentioned in [56] to identify text blocks among the 16 blocks. We expect that the divided block of size

64×64 dimensions should contain at least a few words, which may ease implementation difficulties and

speed up the computation process. This is valid because generally text appears as scatted clusters

rather than filling the entire video frame. Another advantage of the proposed text block detection and

script identification at block level is that when a block contains multiple scripts, the proposed method

is capable of identifying scripts accurately. The divided block is big enough to capture a good number

of characters and at the same time small enough to segregate multiple scripts. Even if two scripts may

exist in the same block, there is a likelihood that one script may dominate in the block. Since our

method chooses the minimum of Euclidean distance such that the dominant script will get identified.

The less dominant script may appear more dominant in another block and gets identified later. This

will help us in two ways. The first is to allow parallel processing, such that whichever pipe that detects

text will go to the next stage in parallel with other pipes. Those pipes that do not find text will stop.

Second, the parallel processing helps us to detect different scripts according to the dominant script in

the respective blocks. The respective blocks will then be sent to the respective OCR engines according

to the script identified automatically.

8

The proposed method is structured into five sub-sections. Section 3.1 introduces a gradient histogram

method for obtaining dominant text components. Finding text candidates based on skeleton and

filtering is proposed in section 3.2. Section 3.3 presents new gradient-spatial features which use the

distances between end points, junction points, intersection points and pixels for the classification of

scripts. Section 3.4 proposes new gradient-structural features based on the skeletonized text

components. Section 3.5 presents a novel way of soft integration of spatial and structural features in

the gradient domain for script identification. In Section 3.6, we describe how to create a template for

identifying scripts for each method, namely, spatial, structural, combined and soft integration.

3.1. Gradient Histogram for Text Components

According to the literature, gradient provides a high value for a text pixel and a low value for a non-

text pixel in video because it gives high response at edges or near edges [23]. It is true that edges are

prominent features for classifying text and non-text. This clue leads us to perform convolution

operation with horizontal and vertical masks on the input text block of any scripts. Equation (1) shows

the formula for convolving horizontal and vertical masks over an input text block to obtain the

gradient image. This is illustrated in Figure 1 where (a) shows the input text blocks of different scripts,

namely, Arabic, Chinese, English, Japanese, Korean and Tamil, (b) and (c) show the outputs of

respective horizontal convolution and vertical convolution operations. One can notice from (b) and (c)

that text pixels at near edges and on edges are sharpened compared to the input blocks. Since video

suffers from low resolution and complex background, there are chances of erroneously considering

gradients which represent non-text as dominant gradient values when we study at block level.

Therefore, we propose a new way of studying dominant gradient information by dividing each

horizontal gradient block at the centroid into two equal parts, namely, the upper and the lower

horizontally. In the same way, we divide each vertical gradient block at the centroid into two equal

parts, namely, the left and the right vertically. This helps us to obtain the dominant gradient values

which represent actual texts even for low contrast text pixels.

To find the centroid for a gradient block, we use the Canny edge image of the input block as shown in

Figure 1(d). We perform histogram operation on each sub-part of gradient blocks and consider each

gradient value which gives the highest peak as the dominant gradient value as shown in Figure 1(e)

and (f), respectively for horizontal and vertical gradient blocks. Figure 1(e) and (f) show that

prominent gradient values that represent actual edge pixels of text compared to horizontal and vertical

gradient blocks shown in Figure 1(b) and (c). This is the advantage of gradient block division and

histogram operation. Finally, we combine the dominant gradient values given by horizontal block and

vertical block to get text components as shown in Figure 1(g), where the structure of the text

components can be seen corresponding to different scripts. The steps and the logical flow can be seen

in Figure 2 for identifying text components by gradient division and histogram operation. Equation (1)

for gradient operation is as follows:

9

�� � ��� � lim
∆�

��	
 ∆	, � � ��	, �
∆	

�
��	
 1, � � ��	 � 1, �

2
,

�� � ��� � lim
∆�

��	,
 ∆� � ��	, �
∆

�
��	,
 1� � ��	, � 1�

2

 ��,� � ���
�
 ��

� (1)

where ��� and ��� correspond to the derivatives along � and � directions at coordinate ��, ��,

respectively. ��,� is its corresponding gradient magnitude. Finally, �� and �� represent the

gradients in horizontal and vertical directions, respectively, and � is the image.

 Arabic Chinese English Japanese Korean Tamil

(e) Dominant gradient pixels by horizontal division

(a) Input blocks

Fig. 1. Intermediate results of text components identification

(b) Horizontal gradient values

(d) Canny edge maps values for calculating centroids

(f) Dominant gradient pixels by vertical division

(g) Text components (horizontal + vertical dominant gradients)

(c) Vertical gradient values

10

3.2. Candidate Text Components

The previous Section 3.1 obtains text components from the input blocks. We believe that the structure

of the text components differs from one script to another. Therefore, we set our objective to study the

structure of the text components through identifying end points, junction points and intersection

points. We propose to use the skeleton criterion to thin text components as shown in Figure 3(a),

where we can see single pixel width text components compared to the results in Figure 1(g). This helps

in studying the exact structure of the text components in addition to saving the computations in

processing thick contours as well as to making the implementation simpler. Note that we use the

modified skeleton algorithm as in [23] for thinning in this work, which shows that the modified

skeleton preserves the structure of the connected components. The example for single pixel width can

be seen in the magnified position on the skeleton of the text components of Chinese script in Figure

3(b), where the thickness of the stroke is actually a single pixel. To make our skeletons more robust to

noise caused by the background, we calculate the area for each skeleton component and eliminate the

skeleton components that have small areas. For the purpose of elimination, we use k-means with k=2

clustering algorithm on the areas of all the skeleton components. This results in two clusters. The

method considers the cluster that gives a lower mean as the unwanted skeleton component clusters and

hence we eliminate them using equation (2). The effect of the elimination can be seen in Figure 3(c),

where we can notice that only stable skeleton components are retained, which we call candidate text

components. This step helps us obtain stable candidate text components which are robust to noise.

Fig. 2. Flow diagram for text components selection using gradient division

11

µ
��

	 minµ
��

,µ
�	

� �2�

where �µ
��

,µ
�	

� are the means of the two clusters and µ
��

 is the mean of the noise clusters.

3.3. Gradient-Spatial-Features (GSpF)

When we look at the candidate text components of different scripts in Figure 3, one can notice that the

spatial distributions of end points, junction points, intersection points, and the pixels of the

components differ from each other. Equation (3) defines the end points, the junction points and the

intersection points of the candidate text components in the block. This clue leads us to propose features

for estimating the distances between the end points, the junction points, the intersection points, and the

pixels using the Euclidean distance as defined in equation (4), which results in proximity matrices for

each block of different scripts. The proximity matrix of endpoints is defined as the distance between

the first end point to the rest of the end points, the second end point to the rest of the end points and so

on until it visits all the end points. In this way, the method estimates proximity matrices for the

junction points, the intersection points and the pixels. For example, it is observed from Figure 3(c) that

the distributions of the above points of Arabic and Tamil appear sparse compared to the spatial

distributions of the points in Chinese, Japanese and Korean. This is due to more sub-components with

more cursiveness which results in more end points, junction points and intersection points in the cases

of Chinese, Japanese and Korean compared to Arabic and Tamil, where we may not see components

containing several sub-components. However, since the components in English share both cursiveness

and straightness, the spatial distribution may be the same as the distributions in Chinese, Japanese and

Korean. To validate these observations, we calculate the variances for the proximity matrices of

respective points for the input scripts shown in Figure 1(a). The results are reported in Table 1. One

Fig. 3. Candidate text components selection after removing false text candidates

(c) Candidate text components after filtering noisy components

(a) Skeletons of text components obtained by skeleton algorithm

 Arabic Chinese English Japanese Korean Tamil

(b) Example for single pixel width skeleton

component

12

can notice from Table 1 that the variance of almost all the points of Arabic and Tamil is higher than

other scripts. This shows that the spatial distribution of those feature points is sparse compared to other

scripts. On the other hand, the variances of Chinese, English and Korean have low values. This

indicates that these points are distributed as close as possible. In summary, we can conclude that these

observations contribute more for classifying English, Chinese, Japanese and Korean from Arabic and

Tamil scripts. We extract these observations by computing the variances for the proximity matrices of

the end points, the junction points, the intersection points and the pixels, respectively. This results in a

single vector containing four variance features.

The definitions for the end points, the junction and the intersection points are as follows.

For any pixel P with surrounding pixels �
������ in a component ��������:

 �
������ � �������� 	 � �3�

P is an end point when k = 1 in equation (3), a junction point when k = 3, and an intersection point

when k = 4.

The proximity matrices for the end points, the junction points, the intersection points and all the pixels

are defined as follows. The proximity matrix of end points is represented by ���,�, where ��	
 is the

set of all end points.

���,� � ||��	
�
� ��	
�

||� �4�

The proximity matrices of the junction points, the intersection points and all the pixels respectively

represented by ���,� , ���,� and ���,� are computed as in equation (4). In the same way, the

variances for proximity matrices are computed as follows. The variance of the proximity of end point

distances is represented by �������, where �� is the set of all the end point distances and ��� is

the mean of the end point distances. � is the size of the corresponding proximity matrix.

������� 	 1�	
 ����,� ! ����	

�

�

�

�

 �5�

For example, we randomly sample five pixels in one candidate text component image of Korean script.

For those five actual pixels, we estimate the proximity matrix using equation (4), resulting in the

following matrix. The method finds the variance for this proximity matrix and then it follows

normalization to make the feature more stable as shown in Table 1.

#$$
$% 0.00 9.229.22 0.00 8.25 16.49 10.209.22 10.44 8.548.25 9.2216.49 10.4410.20 8.54

0.00 10.00 15.6210.00 0.00 18.9715.62 18.97 0.00 -..
./

13

The variance of the junction point distances, the intersection point distances and all the pixel distances

respectively represented by �������, ������� and ������� are computed as in equation (5).

Table 1. Variance features for proximity matrices of end points, junction points, intersection points and

pixels for the input scripts shown in Figure 1(a)

Scripts/Features Variance (ED) Variance(JD) Variance(ID) Variance(PD)

Arabic 0.13 0.02 0.01 0.15

Chinese 0.04 0.01 0.00 0.05

English 0.04 0.00 0.00 0.03

Japanese 0.04 0.04 0.02 0.09

Korean 0.05 0.01 0.01 0.07

Tamil 0.15 0.09 0.07 0.18

3.4. Gradient-Structural-Features (GStF)

It is observed that spatial features alone may not be sufficient to achieve a good accuracy due to low

contrast and complex background of video. To achieve a good accuracy for identifying the six video

scripts, we propose a few more new features using gradient-structural information of the Candidate

Text Components (CTC) because as it is noted from Figure 3 that English, Arabic and Tamil may

share common spatial information but not structural information. Therefore, gradient-structural

features at component level and branch level are proposed.

3.4.1. Features at component level

We believe that the numbers of end points, intersection points and junction points exhibit differences

among the six scripts especially for the group consists of Arabic, English, Tamil and the group consists

of Chinese, Japanese, Korean because the former group does not have components with sub-

components and shows low cursiveness compared to the latter group. With this observation, we

propose to extract the features by counting the numbers of end, intersection and junction points. The

method finds these points as defined in the previous section and counts their numbers as follows. The

total number of end points in a block is represented by 012����� where ��	
 is the set of all the

end points in the block. We divide the total sum by N where N is the number of components in the

block to make the feature invariant to the number of components in the block. This is applied to all the

features introduced in this section at the component level except the features F7-F10.

012���� 	 13 012����� �6�

14

In the same way, the total numbers of the junction points and the intersection points respectively

represented by 012���� ��4 012���� are computed as in equation (6). With this procedure, we get

three features (F1-F3) based on the end, the junction and the intersection points.

Next, we can also observe from the candidate text components that the structure of the components of

different scripts differs from one script to another. For instance, more straightness like straight lines

can be seen in the cases of English and Arabic compared to other scripts. Based on this observation,

we introduce new features to study the structure of the components based on straightness and

cursiveness of the branches in the components. The method finds a pixel that satisfies the condition k

>=2 in equation (3) (intersection or junction), which joins two branches of the components in the

block. This segment consists of two branch endpoints that come from EP, IP and JP. Let a pixel be the

branch point which satisfies condition k >= 2 in equation (3). Traversing any branch point via its two

adjacent pixels will give us the two branch end points. Let P�������� be the calculated straight line

pixels formed from the two branch end points and P������ be the pixels in the branch. A branch is

defined as straight if ������� 6 ��������� else it is defined as cursive or oscillating. The total

numbers of the branches that satisfy either straightness or cursiveness property, the straight branches

that satisfy the above straightness condition, and the curve (oscillating) branches that unsatisfy the

straightness property are respectively represented by 012�7���89:;�, 0127���89;��������� and S12�7���89:;���
���� , which are computed as in

equation (6). With this procedure, we get three more features (F4-F6). These features are shown in

Figure 4 for better understanding.

Figure 4(a) shows a candidate text component of Arabic, while (b) is a zoomed-in version of (a) where

we can see both straight and curve branches. For example, the line on the right side of Figure 4(b)

marked by yellow color is a straight branch, and the cursive branch on the left bottom corner side in

Figure 4(b) has junction points and end points that are marked by orange color. The straight line is

formed by joining the end points and the junction points as shown in red color, which intersects with

 (a) CTC of Arabic (b) Zoomed version of the CTC in (a)

 (c) CTC of English (d) CTC of Arabic (e) CTC of Tamil

Fig. 4. Illustration of straightness and cursiveness of the edges in the components

15

the cursive branch at orange color pixels. As a result, we get two oscillations (like holes) with one

cursive branch as the branch does not satisfy the straightness property. In other words, if the branch

does not have any oscillation then it is considered as a straight branch. This feature is useful for

classifying the scripts such as Arabic, English and Tamil. For instance, it can be seen from Figure 4(c)

of CTC-English, Figure 4(d) of CTC-Arabic and Figure 4(e) of CTC-Tamil that more straight and less

curve branches in the case of CTC-English, less straight and more cursive branches in the case of

CTC-Arabic, while in the case of CTC-Tamil, cursiveness increases and straightness decreases

compared to CTC-English and Arabic. In this way, this feature helps in achieving a good classification

rate. Besides, this feature is new to define straightness and cursiveness in this work as per our

knowledge.

We define structural features based on the proximity matrices defined as in Section 3.3. The proximity

matrices are obtained for the end points, the junction points, the intersection points and all the pixels as

defined in equation (4). Then the means of the proximity matrices are computed as follows and

considered as features for script identification. The mean of the proximity of end point distances is

represented by ���, where ED is the distances matrix of all end points:

��� 	 1�	
 ���,�

�

�

�

�

 �7�

The mean of the junction point distances, the intersection point distances and all the pixel distances

respectively represented by ��� , � � and �!� are computed as in equation (7). As a result, we get

four more features (F7-F10) based on the proximity distances.

The features introduced earlier (F5 and F6) are rigid to check the straightness property of the branch in

the components. Therefore, we propose a weak feature to define straight components because F5 fails

if a branch has a small curve. This condition allows the branches that have small curves along with

exact straight branches compared to the previous feature F5. Let P be all the pixels in the component

and P������� be the centroid of P. If P������� falls on the same component (if P������� 6 P) then

we consider that the component satisfies the straightness property. We count the number of the

components that satisfy the above straightness property in the block and the feature (F11) is computed

as in equation (6).

When we look at the candidate text components in Chinese, Japanese, Korean and other scripts, it is

observed that the numbers of intersection and junction points are more for Chinese, Japanese and

Korean compared to the rests, due to the cursive nature of the scripts in the sense that the characters

have more strokes in different directions whereas Arabic, English and Tamil scripts have one

continuous stroke. Thus there are more chances of intersections. Therefore, we extract the components

that have more than two end points and junction points to classify the scripts. This feature is a stricter

one compared to F1-F3, where the feature considers all the end points and the junction points. This

16

feature helps in classifying Chinese, Japanese and Korean from other scripts. Let Comp be the set of

all the components in a block. The number of the components that have more than two end points is

represented by 012�BC2D�!"	�, where BC2D�!"	 is the set of all the components with more than

two endpoints:

012�BC2D�!"	� 	 012�BC2D���#����!$"	� �8�

The number of the components that have more than two junction points represented by 012�BC2D�!"	� is computed as in equation (8), while the features (F12 and F13) are computed as in

equation (6).

3.4.2. Features at branch level

We also extract features at branch level to study the local structure of the components in the block.

Similar to the procedures at the component level, we divide features in this section by E, which is the

number of branches, to make them invariant to the number of branches.

Let P be all the pixels in a branch and P������� be the centroid of P. We count the number of the

branches that satisfy the straightness property (P������� falls on the branch if P������� 6 P) as it is

done in Feature 11. This feature is extracted based on branch information, while F11 considers the

whole component to check the straightness property. This feature helps in studying the straightness of

each branch in the component and it is considered as F14 after dividing the sum by the number of the

branches.

To analyze the cursiveness of each branch of the component, we extract features based on intersection

points hit on curve branch as defined in F6. Therefore, here the number of intersections is defined as

the number of times points on the curve branch intersect with the straight line formed with the two

endpoints of the branch. Let P�������� be the calculated straight line pixels formed from the two

branch end points and P������ be the pixels in the branch. The number of intersections in the branch

is represented by 012�Intersections� where

Intersections 	 P�������� K P������ �9�

This feature is considered as feature (F15).

To analyze the amount of cursiveness in each branch of the components, we extract features based on

areas of oscillations defined for each branch as discussed in F5 and F6. Area of oscillation,

namely, L�:��M;8NOO�PNC�;� , sums up the deviation of the curve branch points from the straight line

formed with the two end points along the x-coordinates of P��������.

L�:��M;8NOO�PNC�;� 	 QP�������� ! P������Q �10�

This area based feature is considered as F16.

17

To study the exact straightness of each branch in the components, we propose a new condition based

on midpoint and centroid of the branch. Let P be all the pixels in the branch and n be the number of

pixels in the branch, the middle point P%���&� of the branch is P� where i = n/2. The centroid and the

middle points fall on the same point if P������� R P%���&� . The total number of the branches that

satisfy this property is considered as a feature (F17). In this way, we extract in total 17 structural

features at both component and branch levels to improve the accuracy of video script identification.

The above features at both levels are derived based on the observation but not with a fixed threshold.

Therefore, we can believe that the features work like objective features rather than heuristics. In order

to find the contributions of the features both at component level and branch level, we conduct

experiments on our test data to calculate classification rates independently. This will be discussed in

the Experimental section.

3.5. Soft Integration of Gradient-Spatial-Structural Features (GSSF)

It is noted from the above feature extraction methods that the Gradient-Spatial-Features (GSpF) are

good for Chinese, Japanese and Korean since the spatial distribution of the end point distances, the

intersection point distances, the junction point distances and the pixel distances differ from one script

to the other. It can be seen in Figure 3 where due to different cursive natures of the scripts, we can see

a different spatial distribution for each script. Similarly, the Gradient-Structural-Features (GStF) are

good for Arabic and Tamil scripts because these scripts have distinct structures of the components and

branches. It can be confirmed from the results shown in Figure 3, where we can notice different

structures at component level and branch level in each script. As a result, it can be concluded that both

the feature extraction methods complement each other. Therefore, we combine and integrate the above

two feature extraction methods. Here combination means considering 4 from GSpF and 17 from GStF

together as a single feature vector (21 features) for script identification, while integration means

calculating the error factor based on the weight of the confidence score given by a boosting classifier

with the help of respective templates of the two methods. In our method, inspired by the boosting

framework [61], a soft integration is proposed. Rather than passing the errors of the first method to the

second one, for every block, we calculate its respective Euclidean distances to the templates of the two

methods and then integrate these distances together to identify the block. More importantly, we do not

generate templates of the two methods independently when training and the templates of the second

method need to cater to more errors of the first method. Thus, compared to combining in our method,

the terminology “soft integration” is used to manifest that the template formation of the two methods

are dependent to make use of their complementation with each other. However, we consider a 21-

feature vector as a single feature extraction method for combining and generate one set of templates

using few sample data. Template formation for combining and soft integration will be discussed in

Section 3.6. The flow diagram for the proposed soft integration can be seen in Figure 5. The top

rectangle in Figure 5 shows the template formation of GSpF and GStF for the six scripts for

integration. We first get templates of GSpF and then use GSpF method to obtain classification results

18

of the training data. Based on these results, we reweigh the training data in a way that increases the

weight of misclassified results and lowers those for correct ones. Then the templates of GStF are

generated by the reweight data. Intuitively, the templates of GSpF and GStF can be complementary to

make identification. The classification pipeline is given in the bottom rectangle in Figure 5. More

details for predicting error based on weights will be discussed in Section 3.6 for the soft integration

method.

3.6. Template Formation and Classification

As our intention is to use the number of samples as few as possible, we choose 50 blocks from each

class of scripts randomly for constructing templates. We have tested this idea of creating templates and

identification of scripts in [55] with only GSpF features on a small dataset. It is noted that this

template creation works well for achieving a good accuracy. In addition, it requires less time for

matching and classification. Hence, we are motivated to use the same idea for script identification by a

new soft integration method in this work for a large database. The four spatial, seventeen structural

and combined features (21 feature vectors) are computed for the blocks corresponding to 50 blocks of

each script class. Then the average of the variance (4), structural (17) and combined features (21) of

the blocks for each script is computed as defined in equation (11) below:

LST�U:�P1�:� 	 150 U:�P1�:� �11�'(

�)�

This gives six templates (vectors) for the six scripts containing four average variances, seventeen

structural and twenty one combined features, respectively for the GSpF, the GStF and the combined.

For the given block, the method extracts its GSpF, GStF and combined features and compares them

with the respective six templates to find the minimum Euclidean distance to classify the frame into a

Fig. 5. Template formation and classification of soft integrated method

19

particular class. The Euclidean distance for classification here is defined as follows. For a text block

with extracted feature vector FV, the set of Euclidean distance ED = {ED1, ED2 … ED6} between FV

and the set of template vector T = {T1, T2 … T6} is given by

��� 	 V �U�� ! W��
�	

�

�)�

� �12�

where d is the dimension, d = 4 if we are considering the 4 gradient-spatial features, d = 17 if we are

considering the gradient-structural features, and d = 21 if we are considering their combined features.

The classified script is given by 0 6 �1, 2 … 6� where

0 	 arg min������ �13�

This is the same as K nearest neighbor classification with k=1. This procedure gives confusion

matrices for the six scripts of the three methods. The sample templates for GSpF, GStF and combined

features (21 feature vectors) for the scripts, namely, Arabic, Chinese, English, Japanese, Korean and

Tamil can be seen respectively in Figure 6(a)-(f), Figure 7(a)-(f) and Figure 8(a)-(f). The templates

shown in Figure 6, Figure 7 and Figure 8 are plotted by considering the number of feature as X axis

and the average feature values as Y axis. It is observed from Figure 6(a)-(f) that Tamil template may

appear almost the same as English template. As a result, we may get poor results for Tamil compared

to other scripts using GSpF. Figure 7(a)-(f) show that the templates of Chinese, Japanese and Korea

may share some common features and hence we may get poor results for these scripts using GStF.

Further, Figure 8(a)-(f) show that the templates of Tamil and Japanese may appear as English and

Arabic templates and hence we may get poor results for these scripts compared to other scripts. From

the above discussion, it is confirmed that GSpF alone, GStF alone and their combination are not good

enough for classifying six video scripts with a good accuracy. However, the two complement each

other since GSpF gives good results for English, Chinese, Japanese and Korean but it gives bad results

for Arabic and Tamil scripts, while GStF gives good results for Arabic and Tamil but not the rest.

Hence, the integration of GSpF and GStF is proposed in this work.

Without loss of generality, we consider the GSpF features for the first method and GStF for the second

method. Thus, we first generate the templates for GSpF features and then get those for GStF based on

the results obtained only by GSpF templates and the minimal Euclidean distance. We also use GSpF

features first because the GSpF method gets better results than the GStF method individually

according to our experiment. Therefore, we use the templates of GSpF features to modify the template

formation for GStF to cater to errors caused by the GSpF predictor. Specifically, we select 50 blocks

for each script. Then the four spatial and the seventeen structural features are computed for the 50

blocks of each script. The template W�
� for GSpF and ���

�N 	 �1, … ,6� are calculated according to

Equation (11) and (12), respectively. Here we normalize ���
� over the six scripts, namely, ���

� 	

20

���
�

∑ ��
�

�
�

. For any sample ��, N� (N is the script label of �) in training data (6 script*50 blocks), the

predicted class from the template of GSpF is 9���� 	 argmin����
��. For each script, we calculate the

error rate ε��9���� Z N�. Then for the sample ��, N�, the weight [� is defined as

[� 	 \exp �!���1 ! ���
���, 9���� 	 Nexp ������

���, 9���� Z N ^ (14)

�� 	 log `�1 ! ε
��/ε�b (15)

Thus [� is large for an incorrect sample � caused by the minimal Euclidean distance classifier

(Equation 11) 9� (corresponding to 9���� Z N) and is low for the sample with 9���� 	 N. Then the

template for GStF features are calculated by W�
� 	 +�

,
∑ GStF�� , N 	 �1, … ,6�, where f is used to

normalize [�. And for the class N, the error rate ε�� 	 ∑ +�

,
� for � with ��T2N�����

�� Z N�� , where ���
� is also calculated by (12) and normalized over six classes. Let �� 	 log `�1 ! ε

��/ε�b (16)

the overall ��� 	 �����
� j �����

�.
For a text block 8, we just calculate the Euclidean distance according to (12) for templates W�

� and W�
�

where N 	 �1, … ,6� and then obtain ���. The class label is given by argmin�����.

21

(a) Arabic (b) Chinese

 (c) English (d) Japanese

 (e) Korean (e) Tamil

Fig. 6. Templates using Gradient-Spatial Features: X axis represents the number of features and

Y axis represents average spatial (variance) feature values (4)

22

 (e) Korean (f) Tamil

Fig. 7. Templates using Gradient-Structural-Features. X axis represents the number of

features and Y axis represents average structural feature values (17)

(a) Arabic (b) Chinese

 (c) English (d) Japanese

23

4. Experimental Results

We create our own dataset chosen from different sources, such as sports news, weather news, and

entertainment video to show that the proposed method works well for different varieties of video

frames. As to template generation, we choose 50 blocks manually for each script, thus a total of 300

blocks to construct their templates. Our testing dataset includes 200 Arabic frames, 200 Chinese

frames, 200 English frames, 200 Japanese frames, 200 Korean frames and 200 Tamil frames. In total,

1200 frames are used for the purpose of experimentation and evaluation. The sample blocks of the six

scripts from our database are shown in Figure 9, where the first six columns show sample blocks of

Arabic, Chinese, English, Japanese, Korean and Tamil scripts, respectively. One can notice from

Figure 9 that the blocks of different scripts contain different fonts, font sizes, contrast and background.

To evaluate the performance of the method, we consider classification rate as the measure, and present

a confusion matrix containing classification rate/misclassification rate of each script. In subsequent

sections, we present the analysis of the individual features of GSpF and GStF (component level and

branch level features), the experiments on combined features, the experiments on integrated method to

 (c) English (d) Japanese

(a) Arabic (b) Chinese

 (e) Korean (f) Tamil

Fig. 8. Templates for combining Gradient-Spatial-Structural-Features. X axis represents

the number of features and Y axis represents average combined feature values (21)

24

show that the proposed method is robust to noise some extent and the experiments on scanned images

using integrated method to evaluate the effectiveness and the extensibility of the proposed method.

4.1. Experiments on Individual Set of Features

The objective of this experiment is to find the contribution of each set of features, namely, GSpF and

GStF in terms of average classification rate (average of diagonal elements of confusion matrices of

each feature). Figure 10 shows the average classification rate for the four Gradient-Spatial-Features

(GSpF). It is noticed from Figure 10 that feature (F1) and feature (F4) contribute more than feature

(F2) and feature (F3) for classification because the proximity between end points (F1) and all pixels

(F4) gives distinct features for the six scripts. In the same way, the proximity between junction points

(F2) and intersection points (F3) contributes less compared to F1 and F4. This shows that each feature

contributes for classification. Therefore, we combine these four features to get better results for

classification of the six scripts.

We also analyze the 17 Gradient-Structural-Features (GStF) on classifying six video scripts in terms of

average classification rate as it shown in Figure 11, where one can notice that the features F7, F9, F10,

F12 and F13 are better than the other features because these features are based on the distances

Fig. 9. Sample text blocks of six scripts chosen from our video database

 Arabic Chinese English Japanese Korean Tamil

25

between end points, the distances between junction points and the mean of the number of components

that have more than two end points and two junction points. Therefore, these features contribute more

than the other features for classification. However, other features also contribute significantly for

classification. Hence, we combine all the 17 features together to achieve better results for

classification.

4.2. Experiments on GSpF

To study the contribution of Gradient-Spatial-Features (GSpF) in terms of classification rate, we

conduct experiments on our dataset using four features. Based on the experiment, we generate a

confusion matrix for the six video scripts as shown in Table 2. Table 2 shows that the GSpF features

are good for English, Chinese, Korean and Japanese but not good for Arabic and Tamil as most of the

data of Arabic and Tamil are misclassified as English. Therefore, we can infer that the GSpF features

alone may not be sufficient to achieve a good classification rate for all the six scripts.

Fig. 11. Average classification rate for individual features of GStF (structural)

Fig. 10. Average classification rate of individual features of GSpF (spatial): F1,

F2, F3 and F4 represent features of end points, junction points, intersection

points and pixels, respectively.

26

Table 2. Confusion matrix of GSpF (in %)

Scripts Arabic Chinese English Japanese Korean Tamil

Arabic 47.1 13.5 18.5 7.8 7.1 5.7

Chinese 6.1 72.3 3.0 3.0 8.4 6.9

English 1.4 0.7 92.9 0.7 2.2 1.8

Japanese 1.4 2.8 15.7 59.2 15.7 5.0

Korean 0.7 2.8 16.4 2.8 70.7 6.4

Tamil 7.3 7.3 28.6 2.0 12.0 42.6

4.3. Experiments on GStF

As it is realized from the previous experiments that we need a few more features that are capable of

discriminating the six video scripts with a good classification rate, we conduct experiments on all the

six scripts using Gradient-Structural-Features (GStF) to study the 17-feature vector contribution in

terms of classification rate. According to the results reported in Table 3, GStF give good results for

Arabic and Tamil compared to Chinese, English, Japanese and Korean. These scripts are misclassified

as Arabic and Tamil because the extracted structural features may overlap with Arabic and Tamil

scripts. Therefore, we can conclude that GStF alone may not be sufficient to achieve a better

classification rate for all the six video scripts. Further, we can also notice from the experimental results

of GSpF and GStF that GSpF are good for English, Chinese, Japanese and Korean but not good for

Arabic and Tamil, while GStF are good for Arabic and Tamil but not good for the rest. This

observation makes us combine these two feature extraction methods to get better results for

classification.

Table 3. Confusion matrix of GStF (in %)

Scripts Arabic Chinese English Japanese Korean Tamil

Arabic 75.0 5.7 3.5 1.4 1.4 12.8

Chinese 13.8 54.6 0.0 3.0 6.9 21.5

English 30.0 1.1 62.2 0.7 2.5 3.3

Japanese 16.4 14.2 5.7 50.0 5.0 8.5

Korean 14.2 1.4 0.7 7.1 52.8 23.5

Tamil 12.6 2.0 4.0 0.6 2.0 78.6

It is noted that GStF features are the integration of the features at component level (F1-F13) and

branch level (F14-F17) as discussed in Section 3.4. Therefore, we also conduct experiments on

features at component level and branch level separately to understand the contribution from each type.

Classification rate in the form of confusion matrix for both the types are reported in Table 4 and Table

5, respectively. Table 4 shows that the features at component level give a good classification rate for

Chinese, English, Japanese and Korean, and give a low accuracy for Tamil and Arabic compared to the

classification rate of the features at branch level as reported in Table 5. When we look at Figure 11, we

27

can easily understand that F7 and F13 are good structural features as they contribute more than other

features. As discussed in Section 3.4, F7 extracts the mean of the proximity matrix of end points and

F13 extracts the components that have more than two end points. These two features are good for

classifying Chinese, Japanese and Korean but not good for Tamil and Arabic since F1-F13 involves F7

and F13. On the other hand, the features at branch level are good for classifying Arabic and Tamil

because the branches are more cursive in case of Tamil and less cursive in case of Arabic. However,

the features at branch level are not good for Chinese, Japanese, Korean and English as they may share

the same amount of cursiveness and straightness. It is observed from Table 5 that most of the scripts

overlap with the Arabic scripts. In summary, we can conclude that the features at component level are

good for Chinese, Japanese, Korean and English, while the features at branch level are good for Arabic

and Tamil. Thus, the combination of the features at both component and branch levels is needed to

achieve a good accuracy for all the scripts.

Table 4. Confusion matrix of GStF features (F1-F13) at component level (in %)

scripts Arabic Chinese English Japanese Korean Tamil
Arabic 87.5 0 12.5 0 0 0

Chinese 3.4 82.5 13.9 0 0 0
English 4. 57 6.8 85.7 0 0 2.8
Japanese 18. 2 3.4 17.2 57.1 0 3.9
Korean 8.4 0 12.4 0.0 73.6 4.9
Tamil 18.3 1.9 13.8 0 0.0 65.3

Table 5. Confusion matrix of GStF features (F14-F17) at branch level (in %)

scripts Arabic Chinese English Japanese Korean Tamil
Arabic 100.0 0 0 0 0 0

Chinese 48.0 47.0 0 0 0 4.9
English 48.1 0 48.1 0.2 0 3.3
Japanese 58.7 0 0 33.3 0 7.9
Korean 53.5 0 0 0 43.5 3.0
Tamil 2.9 0 0 0 0.5 96.5

4.4. Experiments on Combined GSpF and GStF Features

The experimental results discussed in section 4.3 and 4.4 reveal that there is a necessity of combining

the two feature extraction methods to get a better classification rate for all the six video scripts. With

this intention, we combine the 4 features from GSpF and the 17 features from GStF as to form a 21-

feature vector for classification. We conduct experiments on our dataset and the results are reported in

Table 6, where we can see that the classification rates for Arabic and Tamil have dropped drastically

compared to the results of GStF, and the classification rates for English, Chinese, Japanese and Korean

have dropped compared to the results of GSpF. When we compare the averages of the diagonal

elements in Table 2, Table 3 and Table 6, namely, 64.1% for GSpF, 62.2% for GStF and 58.6% for

combined GSpF and GStF, we find the combined method gives lower results than GSpF and GStF. The

main reason for this is that creating one feature vector from two different scaled feature values bring a

28

problem for matching where we expect the minimum Euclidean distance for classification. Due to the

different natures of feature vectors, the combined method misclassifies most of the data.

Table 6. Confusion matrix of combined GSpF and GStF (in %)

Scripts Arabic Chinese English Japanese Korean Tamil

Arabic 83.571 7.143 5.0 0.714 2.143 1.429

Chinese 15.385 64.615 0.0 6.923 10.769 2.308

English 29.63 0.741 64.815 1.111 2.222 1.481

Japanese 15.0 3.571 13.571 46.429 15.714 15.0

Korean 15.0 2.143 15.0 2.143 61.429 4.286

Tamil 23.333 6.667 24.667 2.667 11.333 31.333

4.5. Experiments on Soft Integration of Gradient-Spatial-Structural-Features (GSSF)

The discussion in the previous Section 4.4 shows that the combined method is not good for

classification of all the six scripts as it gives poor results compared to individual methods. The other

way is to integrate the two methods by combining the strength of each method. Therefore, we propose

soft integration of the two methods in this work to achieve a better classification rate for all the six

video scripts. The results of the soft integrated method are reported in Table 7, where we can notice

the classification rate for the all the scripts increases compared to GSpF, GStF and the combined

method. The average of the diagonal elements in the Table 7 gives 83.0%, which is higher than 64.1%

of GSpF, 62.2% of GStF and 58.6% of the combined method. Hence, it is concluded that rather than

combining two different methods simply, it is better to integrate them based on error factors and

weights to take the full advantage of each method to achieve a better classification rate.

Table 7. Confusion matrix of the proposed integration GSSF method (in %)

Scripts Arabic Chinese English Japanese Korean Tamil

Arabic 84.33 07.53 04.10 00.00 03.00 02.61

Chinese 08.33 80.70 05.23 00.40 01.32 04.02

English 03.60 00.83 93.31 01.10 01.16 00.00

Japanese 02.92 01.95 12.52 76.67 04.88 01.06

Korean 12.51 00.82 00.00 06.43 80.11 00.13

Tamil 11.24 01.55 04.85 00.00 00.00 83.36

4.6. Experiments on Noisy Images of GSSF

Since the proposed method extracts features at component level and uses the candidate text

components after eliminating false candidate text components, we believe our method should be robust

to noise to some extent. In order to test the robustness of the proposed method, we introduce Gaussian

white noises of mean 0 and variance 0.001 for the input text blocks of different scripts as shown in

Figure 12(d). The text components and the candidate text components for the input images are shown

respectively in Figure 12(b) and (c). In the same way, the text components and the candidate text

29

components for noisy images are shown in Figure 12(e) and (f), respectively. When we compare

Figure 12(c) and Figure 12(f), we can see that there are few differences, except for the tiny difference

on the classification rates. We calculate classification rate in the form of confusion matrix as reported

in Table 8. It is noticed from Table 8 that the method gives 79.8% classification rate for noisy images

after averaging the diagonal elements of the confusion matrix. This is lower than the accuracy 83.0%

that is achieved for the images with no noises. Interestingly, we can observe from Table 8 that the

method gives a good classification rate which is more than 80% for all the scripts as in Table 7 except

the Japanese script, which gets even a low classification rate for the images without noises as reported

in Table 7. Therefore, we can assert that the method does not lose much when we introduce noises.

Thus, it is robust to noise to some extent. We can also note that introducing noises in case of video is

rare and an exceptional case since it is not scanned by any device. However, noise can be introduced

due to distortion and low resolution of video.

(f) Candidate text components for the results in (e)

Fig. 12. Sample results of the GSSF on noisy images

(e) Text components for the noisy images in (d)

(d) Input images with the Gaussian white noise

(c) Candidate text components for the images in (b)

(b) Text components for the inputs images in (a)

(a) Input images without noise

 Arabic Chinese English Japanese Korean Tamil

30

Table 8. Confusion matrix of GSSF on Noisy Images

scripts Arabic Chinese English Japanese Korean Tamil

Arabic 82.5 11.5 1.0 4.5 0.0 0.5

Chinese 8.3 80.7 3.4 2.4 0.4 4.4

English 9.0 1.1 84.7 0.0 1.1 3.9

Japanese 24.1 3.4 1.4 68.0 0.4 2.4

Korean 15.4 0.5 2.4 0.0 80.5 1.0

Tamil 12.5 0.0 3.0 2.0 0.0 82.5

4.7. Experiment on Scanned Document Images

To assess the effectiveness and the ability to extend to other scripts of the proposed soft integrated

method, we conduct experiments on high resolution and low resolution scanned document images of

seven scripts, namely, Arabic, Chinese, English, Japanese, Korean, Tamil and Thai. The dataset for

this experimentation is chosen from the database used in [40] for script identification. For each script,

we collect samples of scanned document images. Then we divide the whole document image into

64×64 sized blocks as we have done for video scripts identification in the previous experiments. We

calculate classification rate at block level. The template formation for matching is the same as

discussed in Section 3.6. The sample blocks for high resolution and low resolution of seven scripts are

shown in Figure 13(a) and Figure 13(b), respectively. Low resolution scanned images are created by

reducing the size of the original scanned document image to 1.5 time difference in size using

MATLAB function. For instance, if the original size of the document image is 768×768 dimension,

then for low resolution document image, the size is 512×512 dimension. It can be seen from Figure

13(a) and Figure 13(b) that the blocks representing a high resolution have less texts and bigger fonts

compared to the blocks representing low resolution images. The number of the blocks used for this

experimentation is 1250 for high resolution images and 834 for low resolution images. The confusion

matrices for both the high resolution images and the low resolution blocks are shown in Table 9 and

Table 10, respectively. The results reported in Table 9 and 10 reveal that the proposed integrated

method is good for both the high and the low resolution scanned images as it gives a good

classification rate for both the datasets. When we compare the classification rates by averaging the

diagonal elements of the confusion matrices, the classification rate of high resolution images (94.3%)

is slightly higher than the classification rate of low resolution images (93.1%). This is because of the

loss of information due to the reduction in the size of the original input image. The classification rate

of scanned document images is higher than video frames as scanned images have simple background

and high resolution text compared to video frames. It is also noticed from the experimental results that

the new script (Thai) and more scripts (7 scripts) do not affect the performance of the proposed

method. Therefore, with this experimentation, we can conclude that the proposed integrated method

31

has the ability to handle additional scripts without sacrificing the classification rates of the existing

scripts.

Table 9. Confusion matrix of high resolution scanned documents (in %)

Scripts Arabic Chinese English Japanese Korean Tamil Thai

Arabic 97.0 00.0 01.0 00.3 00.9 00.2 00.6

Chinese 01.1 94.1 01.2 02.3 00.5 00.6 00.3

English 01.2 00.7 94.4 01.5 01.4 00.9 00.0

Japanese 01.2 00.8 01.2 91.2 03.0 02.2 00.4

Korean 00.8 00.2 00.9 00.8 95.6 00.9 00.8

Tamil 00.5 00.6 00.9 00.0 00.6 97.0 00.4

Thai 00.6 00.0 00.9 00.0 00.4 00.2 97.9

Table 10. Confusion matrix of low resolution scanned documents (in %)

Scripts Arabic Chinese English Japanese Korean Tamil Thai

Arabic 97.4 00.4 00.7 00.8 00.0 00.6 00.1

Chinese 00.2 95.0 00.8 01.3 01.0 00.9 00.8

English 00.0 01.2 96.1 00.9 00.9 0.00 00.8

Japanese 03.6 04.2 03.4 84.5 03.7 00.5 00.1

Korean 01.7 00.0 00.7 00.8 92.2 02.7 01.9

Tamil 02.2 02.1 01.2 01.6 01.8 90.2 00.9

Thai 02.2 00.0 00.0 00.1 00.6 00.8 96.4

5. Comparative Study

According to the literature review in the Section 2, most of the methods use SVM classifier for script

classification and identification. But, in our work, we propose to use templates that are constructed

based on average feature values of 50 sample blocks for each script chosen randomly for respective

databases. Therefore, to show that our soft integration method is effective, we compare it with the

(b) Low resolution blocks

Fig. 13. Sample blocks of high and low resolution scanned document images

(a). High resolution blocks

 Arabic Chinese English Japanese Korean Tamil Thai

32

SVM classifier results. We use multi-class SVM classifier with RBF kernel for the same dataset which

includes 50 blocks for each script for training the classifier, and 200 frames for each script for testing.

The extracted gradient-spatial and gradient-structural features (21 feature vector) are passed to the

SVM classifier for classification. We calculate the average precision and processing time for training

and testing to evaluate the performance of the method. The results of the proposed soft integration

method with template matching and with the classifier are reported in Table 11, which shows that

proposed GSSF with the template matching gives a better average precision than with the SVM

classifier. The main reason for getting a poor accuracy with the SVM classifier is the less number of

samples for training. This is the main advantage of the proposed GSSF which does not require a

greater number of samples to improve the accuracy as in the case of SVM, and it does not involve

intensive computations for matching in contrast to SVM which requires more computations such as

kernel processing and matching feature vector with different parameter settings. Furthermore, the

proposed method with template matching can be adapted easily without much modification for

different datasets and even by adding more script classes. On the other hand, SVM requires not only

more samples for trainings but also requires more modifications in terms of kernel selection and

parameter settings at the cost of computations. Therefore, the proposed method GSSF with template

matching takes low processing times for training and testing compared to the SVM. Thus we can

conclude that the proposed method with template matching is better than the proposed features with a

SVM classifier.

Table 11. Comparative study of the proposed GSSF with the SVM classifier

Proposed Method Average precision Training time Testing time

Proposed features with the SVM Classifier 80.4% 0.11s 38s

Proposed features with the Template Matching 83.0% 0.02s 1.41s

We also compare our GSSF method with the existing method [51] which is proposed for video script

identification of English and Chinese using different texture features and the KNN classifier to show

superiority of the method. We choose this existing method [51] for comparative study because this

method addresses the videos script identification problem at text line level with the combination of

texture and statistical features. This method considers only two scripts, namely, English and Chinese

for experimentation. For a fair and comparative study, we consider the same two scripts for

experimentation. Further, the existing method considers text lines as the input for script identification,

while the proposed GSSF considers block as the input, therefore we run the existing method on blocks

as our method does to identify the scripts at block level. The same testing data is used for

experimentation. That is, 1200 frames which include 200 frames for each script. The classification

rates for both the proposed method and the existing method on English and Chinese are reported in

Table 12, where the proposed soft integration method gives a better classification rate compared to the

existing method. The reason for poorer results for the existing method is that the extracted features are

33

not good enough to handle broken segments and the touching between adjacent components as these

features expect some regularity of text pattern in each zone. The proposed soft integration method is

capable of overcoming these problems because the candidate text component selection and the soft

integration of gradient-spatial, gradient structural preserve the uniqueness of scripts in spite of broken

segments and touching caused by low resolution and complex background. In addition, the existing

method is sensitive to the classifier and samples. On top of this, our method works well for the six

scripts under study. Thus the proposed integrated method is superior to the existing method in terms of

classification rate and the number of scripts.

Table 12. Performance of the proposed soft integration method an existing method at block level (in %)

Proposed integration method Gllavata and Freisleben [51]

Scripts
Confusion matrix Confusion matrix

English Chinese Scripts English Chinese

English 84.29 15.71 English 65.58 34.42

Chinese 14.98 85.02 Chinese 45.665 54.335

6. Conclusion and Future Work

We have proposed a new soft integration method which uses the gradient-spatial-structural-features for

identifying six video scripts. The dominant text pixel selection is done based on the histograms on

horizontal gradient and vertical gradient values of the input frames. Then we propose new features

based on spatial and structural information of candidate text components in the blocks to identify the

scripts. The experimental results on individual feature extraction methods and the combined method

show that individual and combined methods are not good enough to achieve a good classification rate

for all the six video scripts. On the other hand, the integration of the two feature extraction methods by

exploiting the strengths of the two methods has been shown to be superior to simply combining them

as one feature vector. The proposed soft integration method is tested on both high resolution and low

resolution of scanned document images to show that the proposed method works well for both video as

well as scanned document images. The performance of the integrated method is compared with a SVM

classifier and an existing method at the block level to show that the integrated method with template

matching is superior to the SVM classifier and the existing method. Our future work will include the

recognition of scripts by exploring temporal information. And also, we are planning to investigate a

new idea for improving skeletonization for noisy and distorted video. Furthermore, we will try to

extend our method for European scripts such as German, French and Russia.

Acknowledgement

We are grateful to anonymous reviewers for their quality comments and suggestions enhance the

quality, as well as clarity of the work in greatly. The work described in this paper was partly supported

by the Natural Science Foundation of China under Grant No. 61272218 and No. 61321491, the 973

Program of China under Grant No. 2010CB327903, and the Program for New Century Excellent

34

Talents under NCET-11-0232. This research is also supported in part under Grant

No.UM.TNC2/IPPP/UPGP/261/15 (BKP010-2013).

References

[1] N. Sharma, U. Pal and M. Blumenstein, “Recent Advances in Video Based Document Processing: a
review”, In Proc. DAS, 2012, pp. 63-68.

[2] J. Zang and R. Kasturi, “Extraction of Text Objects in Video Documents: Recent Progress”, .In Proc.
DAS, 2008, pp. 5-17.

[3] K. Jung, K. Kim and A. K. Jain, “Text information extraction in images and video: a survey”, Pattern
Recognition, 2004, pp. 977-997.

[4] D. Doermann, J. Liang and J. Li, “Progress in Camera-Based Document Image Analysis”, In
proc.ICDAR, 2003, pp. 606-61.

[5] V. Y. Mariano and R. Kasturi, “Locating Uniform-Colored Text in Video Frames”, In Proc. ICPR, 2000,
pp. 539-542.

[6] Q. Ye, Q. Huang, W. Gao and D. Zhao, “Fast and robust text detection in images and videos frames”, In
Proc. Image and Vision Computing, 2005, pp. 565-576.

[7] K. Jung, “Neural network-based text location in color images”, Pattern Recognition Letters, 2001, pp.
1503-1515.

[8] H. Zhang, K. Zhao, Y. Z. Song and J. Guo, “Text extraction from natural scene image: A survey”,
Neurocomputing, 2013, pp 310-323.

[9] C. Yi and Y. Tian, “Text extraction from scene images by character apperance and structure modeling”,
Computer Vision and Image Understanding, 2013, pp 182-194.

[10] C. M. Thillou and B. Gosselin, “Color text extraction with selective mtric-based clustering”, Computer
Vision and Image Understanding, 2007, pp 97-107.

[11] R. Minetto, N. Thome, M. Cord, N. J. Leite and J. Stolfi, “SnooperText: A text detection system for
automatic indexing of urban”, Computer Vision and Image Understanding, 2013 (article in press)

[12] C. M. Gracia, M. Mirmehid and J. L. G. Mora, “Fast persepective recovery of text in natural scenes”,
Image and Vision Computing, 2013, pp 714-724.

[13] L. Rong, W. Suyu and Z. Shi, “A two level algorithm for text detection in natural scene images”, In Proc.
DAS, 2014, pp 329-333.

[14] P. Zhou, L. Li and C. L. Tan, “Character recognition under severe perspective distortion”, In Proc.
ICDAR, 2009, pp 676-680.

[15] Y. Zhou, J. Field, E. L. Miller and R. Wang, “Scene text segmentation via Inverse rendring”, In Proc.
ICDAR, 2013, pp. 457-461.

[16] D. Chen, J. M. Odobez and H. Bourlard, “Text detection and recognition in images and video frames”,
Pattern Recognition, 2004, pp. 595-608.

[17] D. Chen and J. M. Odobez, “Video text recognition using sequential Monte Carlo and error voting
methods”, Pattern Recognition Letters, 2005, pp. 1386-1403.

[18] K. L. Bouman, G. Abdollahaian, M. Boutic, and E. J. Delp, “A Low Complexity Sign Detection and
Text Localization Method for Mobile Applications”, IEEE Trans. Multimedia 13, 2011, pp 922-934.

[19] A. Hartl and G. Reitmayr, “Rectangular Target Extraction for Mobile Augmented Reality Applications”,
In Proc. ICPR. 2012, pp 881-84.

[20] A. K. Jain and B. Yu, “Automatic Text Location in Images and Video Frames”, Pattern Recognition,
1998, pp. 2055-2076.

[21] V. Wu, V. Manmatha and E. M. Riseman, “Text finder: An automatic system to detect and recognize text
in images”. IEEE Trans. on PAMI, 1999, pp. 1224-1229.

[22] K. L. Kim, K. Jung and J. H. Kim, “Texture-Based Approach for Text Detection in Images using
Support Vector Machines and Continuous Adaptive Mean Shift Algorithm”, IEEE Trans. on PAMI,
2003,pp. 1631-1639.

35

[23] P. Shivakumara, T. Q. Phan and C. L. Tan, “A Laplacian Approach to Multi-Oriented Text Detection in
Video”, IEEE Trans. on PAMI, 2011, pp. 412-419.

[24] P. Shivakumara, R. P. Sreedhar, T. Q. Phan, S. Lu and C. L. Tan, “ Multi-Oriented Video Scene Text
Detection through Bayesian Classification and Boundary Growing”, IEEE Transactions on CSVT, 2012,
pp. 1227-1235.

[25] N. Sharma, P. Shivakumara, U. Pal, M. Blumenstein and C. L. Tan, “A New Method for Arbitrarily-
Oriented Text Detection in Video, In Proc. DAS, 2012, pp. 74-78.

[26] P. Shivakumara, T. Q. Phan, S. Lu and C. L. Tan, “Gradient Vector Flow and Grouping based Method for
Arbitrarily-Oriented Scene Text Detection in Video Images”, IEEE Transactions on Circuits and Systems
for Video Technology (TCSVT), Vol. 23, No. 10, pp 1729-1739, 2013.

[27] Y. Liu, Y. Song, Y. Zhang and Q. Meng, “A Novel Multi-Oriented Chinese Text Extraction Approach
from Videos”, In Prod. ICDAR, 2013, pp 1355-1359.

[28] L. Wu, P. Shivakumara, T. Lu and C. L. Tan, “Text Detection using Delaunay Triangulation in Video
Sequences”, In Proc. DAS, pp 41-45, 2014.

[29] C. Shi, C. Wang, B. Xiao, S. Gao and J. Hu, “End-to-end scene text recognition using tree-structured
modesl, Pattern Recognition (to appear).

[30] T. Q. Phan, P. Shivakumara, S. Tian and C. L. Tan, “Recognizing text with perspective distortion in
natural scenes”, In Proc. ICCV, 2013, pp 569-576.

[31] L. Li, W. Goh, J. H. Lim and S. J. Pan, “Extended spectral regresssion for efficient scene recognition”,
Pattern Recognition (to appear).

[32] T. Q. Phan, P. Shivakumar, T. Lu and C. L. Tan, “Recognition of video text through temporal
integration”, In Proc. ICDAR, 2013, pp 589-593.

[33] S. Roy, P. P. Roy. P. Shivakumara and U. Pal, “Word recognition in natural scene and video images using
Hidden Markov Model”, In Proc. NCVPRIPG, 2013, pp 1-4.

[34] Tesseract. http://code.google.com/p/tesseract-ocr/.

[35] D. Ghosh, T. Dube and A. P. Shivaprasad, “Script Recognition-Rview”, IEEE Ttansactios on PAMI,
2010, pp 2142-2161.

[36] T .N. Tan, “Rotation Invariant Texture Features and Their Use in Automatic Script Identification”, IEEE
Transactions on PAMI, 1998, pp 751-756.

[37] A. Busch, W. W. Boles and S. Sridharan, “Texture for Script Identification”, IEEE Transactions on
PAMI, 2005, pp 1720-1732.

[38] L. Shijian and C. L. Tan, “Script and Language Identification in Noisy and Degraded Document Images”,
IEEE Transaction on PAMI, 2008, pp 14-24.

[39] G. D. Joshi, S. Garg and J. Sivaswamy, “A generalized framework for script identification”, IJDAR, 2007,
pp 55-68.

[40] S. Lu, L. Li and C. L. Tan, “Identfication of scripts and orientation of degraded document images”,
Pattern Analysis and Applications, 2010, pp 469-475.

[41] S. Jaeger, H. Ma and D. Doermann, “Identifying Script on Word-Level with Informational Confedence”,
In Proc. ICDAR, 2005, pp 416-420.

[42] P. B. Pati and A. G. Ramakrishnan, “Word level multi-script identification”, Pattern Recognition Letters,
2008, pp 1218-1229.

[43] S. Chanda, S. Pal, K. Franke and U. Pal, “Two-stage Apporach for Word-wise Script Identification”, In
Proc. ICDAR, 2009, pp 926-930.

[44] S. Chanda, O. R. Terrades and U. Pal, “SVM Based Scheme for Thai and English Script Identification”, In
Proc. ICDAR, 2007, pp 551-555

[45] L. Li and C. L. Tan, “Script Identification of Camera-based Images”, In Proc. ICPR, 2008.

[46] A. M. Namboodiri and A. K. Jain, “On-line Script Recognition”, In Proc. ICPR, 2002, pp 736-739.

[47] S. Ghosh and B. B. Chaudhuri, “Composite Script Identification and Orientation Detection for Indian Text
Images”, In Proc. ICDAR, 2011, pp 294-298.

36

[48] R. Bashir and S. Quadri, “Identification of Kashmir script in a bilingual document image”, In Proc. ICIIP,
2013, pp 575-579.

[49] R. Rani, R. Dhir and G. S. Lehal, “Script identification of pre-segmented multi-font character and
digits”,In Proc. ICDAR, 2013, pp 1150-1154.

[50] M. A. Ferrer, A. Morales and U.Pal, “LBP based line-wise script identification”, In Proc. ICDAR, 2013,
pp 369-373.

[51] J. Gllavata and B. Freisleben, “Script Recognition in Images with Complex Backgrounds”, In Proc. IEEE
International Symposium on Signal Processing and Information Technology, 2005, pp 589-594.

[52] N. Sharma, S. Chanda, U. Pal and M. Blumestein, “Word-Wise Script Identification from Video Frames”,
In Proc. ICDAR, 2013, pp 867-871.

[53] P. Shivakumara, N. Sharma, U. Pal, M. Blumenstein and C. L. Tan, “Gradient-angular-features for word-
wise video script identification”, In Proc.ICPR, 2014 (to appear).

[54] T. Q. Phan, P. Shivakumara, Z. Ding, S. Lu and C. L. Tan, “Video Script Identification based on Text
Lines”, In Proc. ICDAR, 2011, pp 1240-1244.

[55] D. Zhao, P. Shivakumara, S. Lu and C. L. Tan, “New Spatial-Gradient-Features for Video Script
Identification”, In Proc. DAS, 2012, pp 38-42.

[56] P. Shivakumara, A. Dutta, Trung Quy Phan, C. L. Tan and U. Pal, “A Novel Mutual Nearest Neighbor
based Symmetry for Text Frame Classification in Video”, Pattern Recognition, 2011, pp 1671-1683.

[57] Y. Terada, R. Huang, Y. Feng and S. Uchida, “On the possibility of structure learning –based scene
character detector”, In Proc. ICDAR, 2013, pp 472-476.

[58] R. Huang, P. Shivakumara, Y. Feng and S. Uchida, “Scene character detection and recognition with
cooperative multiple-hypothesis framework”, Transactions on Information and Systems (IEICE), 2013, pp
2235-2244.

[59] R. Huang, P. Shivakumara and S. Uchida, “Scene character detection by an Edge-ray filter”, In Proc.
ICDAR, 2013, pp 462-466.

[60] P. Shivakumara, A. Dutta, C. L. Tan and U. Pal, “Multi-Oriented Scene Text Detection in Video based on
Wavelet and Angle Projection Boundary Growing”, Multimedia Tools and Applications (MTA), Springer-
Verlag, 2013.

[61] R. E. Schapire and Y. Singer, “Improved Boosting Algorithms Using Conidense-rated Predictions”,
Machine Learning, 1999, pp 297-336.

37

Highlights

Dominant pixel selection by exploring gradient information with histogram

Proposing Gradient-Spatial-Features for text candidate selection

Proposing Gradient-Structural-Features in new way for text candidate selection

Determining weights based on templates for correct classification

Integrating Gradient-Spatial-Structural-Features in novel way for classification

