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Abstract. Automatic category discovery from images is a challenging
problem in computer vision community especially from natural scene
images due to the great variability in them. This paper proposes a nov-
el context-aware topic model for category discovery in complex natural
scenes. The proposed model constructs a generative probabilistic proce-
dure from three-level features consisting of patch, region and the entire
image by introducing latent topic variables to every patch and every re-
gion. Additionally, a new kind of scene context prior, namely, the spatial
preference of categories, is also modeled using only a few parameters to
reduce the ambiguity of categories in scene images. By regarding ”topics”
as ”categories”, category discovery is thus converted to the inference of
the proposed probabilistic model, which will further be addressed under a
Gibbs-EM framework effectively. Experimental results on two benchmark
datasets comprising MSRC-v2 and SIFT Flow show its effectiveness and
the advantages comparing with other methods.

1 Introduction

Unsupervised visual category discovery has been a research hot spot in comput-
er vision community in the past decades due to its potential uses in automated
visual content summarization, scene structure mining and automatic image la-
beling. Its ultimate target is to recognize visually similar categories and segment
out their various instances by directly mining an unlabeled image set. Indeed,
many efforts [1–14] have been made to achieve this goal. Roughly, for visual
category discovery, most of them use either probabilistic graphical models or
any clustering method to group image patterns such as patches and regions that
have similar appearance and simultaneously co-occur in images. Although these
methods obtain good results in particular datasets like MSRC-v2 [15], they still
face a lot of challenges especially for complex natural scene images which more
likely have much variability in their appearances.

Topic models including Latent Dirichlet Allocation (LDA) [16] are a kind of
generative probabilistic graphical models. They are popular in unsupervised cat-
egory discovery due to the strength of Bag of Words representation for an image
when regarding topics as categories. As known, topic models are appearance-
based and ignore any extra priors like the spatial compactness of objects. Un-
fortunately, the main challenges of category discovery for the images captured
from one natural scene generally include diversified shotting environments and
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complex image configurations due to occlusion, viewpoint variations and so on.
Thus on one hand, scene context priors like the spatial preference of any cate-
gory or category concurrence are necessary to be included to mitigate negative
effects of photometry like weak illumination, shade or reflectance, and the large
intra-class variability. For example, [17] introduces a context-aware topic model
(CA-TM) to facilitate category discovery in natural scenes by including the s-
patial preference of each category. However, the learning of the prior of spatial
preferences is separated from category discovery itself in their model. On the
other hand, the features of different levels theoretically need to be integrated
to extend a single level representation (sparse patches) in the traditional topic
model since sparse patches are essentially insufficient to discriminate different
topics. For example, besides image patches, [3] first introduces region features
to reduce the ambiguity and enforce the spatial coherence of topic assignments.

In this paper, after integrating the image-level GIST feature [18] into cat-
egory discovery, we bring forward a novel context-aware topic model named
NCA-TM, which not only makes full use of multi-level representation of images
from small patches to the entire image, but also succeeds in integrating the s-
patial preference of categories based on the conclusion that the GIST feature
of an image can predict the location and the scale of instances of any category
effectively [19]. Note that we model the prior explicitly in our graphical model
by a few parameters instead of learning many global maps via complex steps as
in [17]. NCA-TM assigns every region or patch a latent topic label and then de-
rive each observation (e.g., features of patches, regions and images). In this way,
category discovery is converted to the inference of NCA-TM and Gibbs-EM [20]
is adopted to address it.

Our main contributions of this paper include:

1. We put forward a novel context-aware topic model by integrating multi-level
image features, and

2. Spatial preference of categories is characterized in a more flexible way for
assisting category discovery from complex natural scene images. The experi-
mental results on two benchmark datasets consisting of MSRC-v2 and SIFT
Flow [21] show the effectiveness of the proposed model.

The rest of the paper is organized as follows. Section 2 discusses the related
work. In Section 3 we give our multi-level image representation. Section 4 shows
the details of the proposed generative model for category discovery, and its in-
ference is discussed in Section 5. Experimental results and discussions are given
in Section 6, and finally Section 7 concludes the method.

2 Related work

Currently, many techniques have been exploited in unsupervised category dis-
covery. Roughly, these methods can be categorized into two classes: generative
probabilistic models and clustering-based methods. The former searches for re-
peated patterns from a large number of unlabeled images using the variants
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of topic models [1–8], while the latter groups features or image regions with
similar appearance through clustering methods [9–13]. [14] gives a systematic
introduction and comparative study to the earlier methods.

Generative probabilistic model. Most generative methods are extensions
to a topic model. Among these methods, the most typical one is Latent Dirichlet
Allocation (LDA) [1], which regards image segments as documents and categories
in images as topics for object discovery. Since the traditional LDA ignores the
spatial compactness of words in images, [2, 3, 7] extend it by including spatial
compactness priors. Besides, [6] uses extra information of correspondences be-
tween features to improve the results. Recently, [5] adds the mutual correlation
between topics and scene spatial context to facilitate visual modeling. However,
scene context priors have to be learned in advance in their methods.

Clustering-based Methods. These methods are different from each other
mainly on the strategies they considered to construct the similarity measure-
ment between features or regions. For example, [11] uses link analysis on an
appearance-similarity network between features and then constructs a structure-
similarity matrix between features. As a result, the problem is reduced to spectral
clustering to classify features belonging to the same object into the same group.
Recently, [12] puts forward object-graphs to model regions, in which the regions
of similar appearance and surrounding context are clustered together to form
a object. They extend it to make the system automatic by searching for easy
objects first and then hard objects gradually [13]. However, these methods are
relatively limited to the ability to either image segmentation or features integra-
tion of different levels to compare regions. More details can be found in [14].

Additionally, there are methods [22–24] that unify category discovery and
other applications simultaneously. For example, [17] considers scene labels to
category discovery in order to perform scene classification. [25] integrates unsu-
pervised object discovery and image-cosegmentation under an MRF framework
to co-segment co-occurring foreground objects. However, it only segments out
instances of a single foreground object. Besides, [26] models unsupervised object
class discovery under an multi-instance learning framework based on saliency
detection. However, they only search for object classes rather than any cate-
gories in our model. Although [27] models any categories, they focus more on
co-segmentation rather than constructing appearance model of each category
explicitly.

3 Image description

In our method, we represent each natural scene image Id through three levels
(See Fig. 1), namely, patch, region and image level features. Specifically, on the
first level, we sample image patches Pd over the image densely and describe their
appearances using SIFT. Then visual word wdp is adopted to approximate the
appearance of pd by assigning it to the nearest word in the visual vocabulary
pre-obtained by vector quantization of all the patch features. Simultaneously,
we oversegment Id into plenty of regions Rd to form the second level with each
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region rd corresponding to a homogeneous area. Alike, we assign rd with a visual
word vdr from an off-line region appearance codebook according to its feature. In
addition, ldr is used to represent the location of rd corresponding to its center.
There is only one image-level GIST gd feature on the third level. To further
remove redundancy, we perform PCA on traditional GIST features. Note that
as the level goes up, the features pay more attention to entirety and by the
contrary, more details are included into the features at the bottom level. The goal
to construct the multi-level representation is to model the spatial compactness
of each topic and its consistency to the spatial preference of categories in the
scene.

Fig. 1. Three-level image representation for an image. The first level are the features
of dense image patches. The middle level corresponds to regions features and the top
level has only one GIST feature of this image.

4 The proposed generative model

After the three-level representation of any image is generated, we further con-
struct a generative probabilistic model (NCA-TM) to derive these observations.
Like LDA, we regard each scene image as a document and categories in images
as ”topics”. Topic proportions of images are represented by θ and for an image
Id, we need firstly sample its topic proportion θd ∼ Dir(α) which governs the
likelihood of each topic appearing in Id. Thus topic labels of patches and regions
are generated based on θd and finally all the observations of its three-level repre-
sentation. To make all the parameters and the variables clear for understanding,
we list all the notations in Table 1. The overall generative process is summarized
in Table 2.
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Table 1. Important notations in our model

Notations Descriptions

d = {1, · · · , |I|} the index of all images I
dr = {1, · · · , |Rd|} the index of regions in Rd

dp = {1, · · · , |Pd|} the index of patches in Pd

dt = {1, · · · , T} the index of topics in td
vdr = {1, · · · , V } the visual word of dr
wdp = {1, · · · ,W} the visual word of dp

Fd = µdt, sdt|∀dt ∈ td all attributes in d
µdt the center of the topic t in d
sdt the scale of the topic t in d
ldr the region center of dr
gd the GIST features reduced by PCA

Latent variables Description

tdr = {1, · · · , T} the topic label of dr
tdp = {1, · · · , T} the topic label of dp

θd ∈ [0, 1]T the topic proportion of d

Ψ ∈ RT×|V |, Φ ∈ RT×|W | the probability of each word in each topic

Parameters Description

Ω the parameters of P (gd|Fd)

Hyperparameters Descriptions

α, β, γ control the prior of P (θ|α), P (Φ|β) and P (Ψ |γ) respectively

Table 2. The generative process of our generative model

(1) For each topic t, sample Φt ∼ Dir(β) and Ψt ∼ Dir(γ);
(2) For each image Id, sample its topic proportion θd ∼ Dir(α) firstly;
(3) For each region Rr ∈ Id, sample tdr ∼ Multi(θd) and then sample vdr ∼ Multi(Ψtdr );
(4) For each patch Pp ∈ Rr, sample its visual word wdp ∼ Multi(Φtdr );
(5) Given all sampled td, sample gd ∼ P (gd|Fd(td, ld)).

Generating the first two-level features. Visual words of patches
and regions can be treated as words in topic models. In another word, each visual
word is derived from one unique latent topic and thus they are conditionally
independent. However, since any region in the second level manifests a consistent
appearance within it, we enforce the patches in one region to share the same topic
as the region similar to [3]. Note that the proportion of different words in any
topic is particular and stable, we model them as Φ and Ψ for patch words and
region words, respectively. For each topic t, Φt is generated from a prior Dirichlet
distribution Φt ∼ Dir(β). Likewise, Ψt ∼ Dir(γ). Thus given a region r, we first
select its topic tdr via a multinomial distribution tdr ∼ Multi(θd). Then its visual
word vr is sampled from vr ∼ Multi(Φtdr). Simultaneously, the visual words of
all the image patches in r are drawn from Multi(Ψtdr ) one by one. Since we do
not know any location priors of each topic and thus we assume P (ldr|tdr) is
uniform.
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Generating the third-level features. As a kind of image lev-
el feature, GIST is representative for image characteristics such as the occur-
rence, location and scale of a single topic and spatial layout among topics. Note
that these abstract attributes of topics in one image is also fixed after top-
ic labels are sampled for all regions on the second layer. Thereby, we define
P (gd|ld, td) ≡ P (gd|Fd) for any image Id. Fd is a series of attribute function-
s {f c(Td, Rd, Pd), c = 1, · · · , |F |} where Td is a collection of all tdr. In order
to simplify the modeling, we use only independent attributes for each topic:
location µ and scale s. When we concatenate the two attributes of all topics to-
gether, Fd = {µdt, sdt|∀t ∈ Td}. Thus we sample gd from P (gd|Fd). If we assume
P (Fd) is uniform, P (gd|Fd) ∝ P (Fd, gd). Assume that µ and s are conditionally
independent, the generative process can be defined by

P (gd|Fd) ∝ P (Fd, gd) =
∏
t∈td

P (µdt, gd)P (sdt, gd) (1)

We adopt the simple generalized linear model to formulate P (s, g) and P (µ, g)
rather than more complex mixtures of Gaussians in [19]:

P (µdt, gd) = G(µdt; b
0
t + bTt gd, σ1

2
t ) (2)

P (sdt, gd) = G(sdt; q
0
t + qT

t gd, σ2
2
t ) (3)

where Ω = {b0t , q0t , σ12t , σ22t , bt, qt|∀t ∈ T} are model parameters to learn.

Fig. 2. The proposed graphical model.

Overall, the graphical model of our context-aware generative model is shown
in Fig. 2. Given corresponding parameters, the joint distribution of all the vari-
ables can be obtained by

P (w,v, l, g, t) =

∫
θ

∫
Φ,Ψ

∏
k

P (Ψk|γ)P (Φk|β)
|I|∏
d

P (θd|α)
|R|∏
r

P (tdr|θd)P (vdr|Ψtdr )

P (ldr|tdr)
∏
p∈r

P (wdp|Φtdr )P (gd|F (td, ld))dθdΨdΦ

(4)
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5 Model learning and inference

The goal of category discovery corresponds to the inference of the graphical
model, namely, maximizing the posterior distribution of latent variables given all
observations P (t|w, l, g,v;Ω,α, β, γ). Different from the traditional topic model,
we also need to estimate the parameters Ω during the inference. Thereby, we
adopt a Gibbs EM algorithm [20] to the model inference and parameter learning.
The main difference between our method and the typical EM is that Gibbs
EM uses Gibbs sampling to estimate the posterior distribution in the E-step.
Likewise, the E-step and M-step are interleaved and process iteratively into
convergence.

E-step: In the E-step, by integrating out θ, Φ and Ψ , tdr can be sampled
from a Gibbs sampling procedure. The distribution of tdr conditioned on t−dr

is

P (tdr = k|t−dr,w,v, l, g;Ω,α, β, γ) ∝(nk,−dr
d,(·) + αk)

nk,−dr
(·),vdr + βv∑V

c=1 n
k,−dr
(·),c + βc∏W

wdp,p∈Rdr
A

mdr
wdp,(·)

m
(·)
wdp,k+γwdp

−1

A
mdr

(·),(·)

m
(·)
(·),k+γ−1

P (gd|td, ld;Ω)

(5)
where mr

w,k denotes the number of patches in the region r with the visual word

w and the topic label k. nk,−r
d,v represents the number of regions in the image d

with the visual word v and their topic labels equal to k except the region r. If
any dimension is not limited to some specific value, we use to (·) to replace it.
A is the P-permutation operator.

M-step: In the M-step, we need to estimate Ω based on sampled t in the
E-step. Firstly, for each topic t appearing in any image Id, µdt are calculated
following µdt = 1

Ndt

∑
tdr=t ldr and alike, sdt = 1

Ndt

∑
tdr=t (ldr − µdt)

2. Ndt is

the number of regions in Id with their topic labels equal to t. As [19] validated,
GIST feature is not sensitive to horizontal locations of topics. Thus we only
calculate the two attributes along the vertical direction. When all udt and sdt
are calculated, the corresponding parameters Ω can be obtained by

B = (UTU)UTG Q = (STS)STG

Σ1 = (U −GBT )T (U −GBT )

Σ2 = (S −GQT )T (S −GQT )

(6)

where U and S are two |D| × T matrices with each element corresponding to
udt and sdt, respectively. G is a matrix with each row corresponding to gd.
B,Q,Σ1andΣ2 are model parameters with each row representing b, q, σ1 and
σ22 of each t, respectively. Experimental results show the simple generalized
linear model also functions well to model the spatial preference of categories.



8 Zehuan Yuan and Tong Lu

Simultaneously, after the Gibbs EM framework are converged, we can also
get the characteristic visual word distributions Ψ and Φ. Since Ψ and Φ are
conditionally independent on the samples of t, the evaluation of Ψ and Φ are not
correlated. Thus they can be estimated as in the traditional LDA

Φw
k =

m
(·)
w,k + β

m
(·)
(·),k +Wβ

Ψv
k =

n
k,(·)
(·),v + γ

n
k,(·)
(·),(·) + V γ

(7)

6 Experiments

6.1 Datasets

We evaluate our methods on two datasets: MSRC-v2 and SIFT Flow. MSRC-v2
dataset has altogether 21-categories (591 images). SIFT Flow datasets includ-
ing images from 8 natural scene classes with 2688 images (256 × 256) and 33
categories in all the images totally. SIFT Flow is selected following two consid-
erations: 1) all the images are captured in natural scenes with relatively stable
context in each scene, and 2) all the images have pixel-level ground-truth labels.
Note that all the images in MSRC-v2 are also resized into 256× 256.

6.2 Experimental settings

In order to generate three-level representation for an image, we first sample
12 × 12 patches densely in the image with step 3 pixels and then extract their
SIFT features. These features are then vector quantized to form a codebook of
size 500 using K-means. SLIC [28] is used to generate homogeneous regions for
each image with the initial region-size 30 and then for each region, we extract
its texture feature with 40 dimensions using the same filter bank as [12] and its
3-dimension color. Likewise, a region color codebook of size 20 and a texture
codebook of size 200 are obtained by clustering all region color features and
texture features, respectively. Additionally, for the third level GIST feature, we
apply PCA to reduce the typical GIST feature of 512 dimensions to 64 to prevent
overfitting of our selected generalized linear model. As to hyperparameters, we
set α = 50/T, β = 200/W andγ = 200/V .

6.3 Evaluation Metrics

As [12] also states, it is difficult to ensure what each topic corresponds to. In
another word, it may represent either an semantic category or a part of any
category such as the window of any building. Thus without semantic information,
it is difficult to evaluate it in the same way as image segmentation or labeling
with supervised assistance, especially for the practical case that we don’t know
the topic number in advance. Thereby, we adopt the purity score to measure
the coherence of topic assignments to pixels. Note that a higher purity score
indicates that topic assignments are more consistent with ground-truth labels.
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6.4 Evaluation and results

Without smoothing topic assignments, several example raw results for MSRC-v2
and SIFT Flow are shown in Fig. 3 and Fig.4, respectively. We find that most
of the categories in the images are distinguished from each other despite some
noise, which can be removed in any practical application. Note that windows
are labelled as a different topic from that of buildings since there indeed exists
semantic gap. Since the best topic number is not known to us and thus we report
purity scores with different topic numbers. We find in Fig. 5 that for the two
datasets, as the topic number arise, the performance become better and get the
best performance within the interval [1, 1.5] × N where N is the ground-truth
category number. Besides, it is not beneficial to our model that the topic number
is too large.

In order to validate the effectiveness of modeling GIST and its implying scene
context in NCA-TM, we conduct comparative study with our modified version
(a), and the spatial LDA method [2] (b) on MSRC-v2 and SIFT Flow. In (a), we
delete the variable g and related edges. Essentially, (a) is unsupervised spatial-
LTM [3] because P (l|z) is uniform in our model. Spatial LDA (b) only adds
the prior that the patches of the same topic should be close and no any scene
context prior is included. From Fig. 5, we can see our modeling of GIST has two
different impacts for MSRC-v2 and SIFT Flow. Our model is inferior compared
to (a) and (b) in MSRC-v2 and gets the best performance in SIFT Flow by the
contrary. It is observed that for most of images in MSRC-v2, instances of the
foreground categories are likely to locate in the center. Thus there are less stable
context reflected by GIST since GIST indicates locations and scales of categories
by the environment around them [19]. However, the images in SIFT Flow are
from natural scenes with stable scene context (See Fig. 4 for image examples).
Thereby, including GIST in the dataset like MSRC-v2 to category discovery has
little improvement or even inferior performance. According to the comparison,
we conclude that our modeling of GIST in NCA-TM is effective and necessary
for natural scenes.

Simultaneously, we further compare the method (c) in [17] to show our mod-
eling of GIST is more flexible and effective than their global location maps.
Note that the method is intended to scene classification and it is an extension
of DISC-LDA [24] to include global contexts and semantic labels. Thus we only
simplify it by replacing DISC-LDA by spatial-LTM and the modeling of their
global context does not change. The comparative results are shown in Fig. 5 and
we find in SIFT Flow, our performance is superior to (c) obviously. The results
further validate the intuition that GIST is effective and flexible to model scene
contexts and category discovery in natural scenes can benefit from our model.

The modeling of the category spatial preference prior into category discovery
is indeed explored earlier. However, our model moves forward by considering
them as specific cases of our NCA-TM. Thereby, the proposed model is essen-
tially a more generalized framework:

1. If we remove GIST features, namely the node of g and the related nodes of
parameters in the graphical model, the model will be reduced to [7] where
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Fig. 3. Example category results of MSRC-v2. Different colors in category discovery
results represent different topics.
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Fig. 4. Category results of 4 scenes in SIFT Flow with two examples for each scene.
Different from the experiments on MSRC-v2, we perform NCA-TM on 8 scenes respec-
tively rather than all scene images together. Different colors also represent different
topics. However, colors of different scene examples are independent.
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Fig. 5. Purity scores of MSRC-v2 and SIFT-Flow at different topic numbers.

they use Gaussian to model P (ld|td) rather than our uniform assumption.
Thereby, their model can only enforce the same topic to the patches that are
spatially compact.

2. If we replace GIST features with many global location maps of topics, namely
cutting the image-related relation between td and gd, the model will be sim-
ilar to [17] for scene recognition. As known, global location map of categories
is unstable and does not make use of valuable image-specific information.

Therefore, our model is an generalization to the existing models to use scene
context prior and the spatial preference of categories for category discovery in
natural scene images. Experimental results show our model outperforms these
models especially in natural scene images.

To conclude, our model succeeds in modeling the scene context prior, the
spatial preference of categories, and integrate multi-level features in a flexible
and effective way and it is better for category discovery in natural scene images.

7 Conclusion

In this paper, we propose a novel context-aware topic model to make use of
multi-level features and scene context priors to facilitate category discovery in
natural scenes by a flexible and effective way. The model constructs a genera-
tive probabilistic procedure for all the three-level features by regarding ”topics”
as ”categories”. Category discovery corresponds to the inference of the model,
which is addressed under the Gibss-EM framework. Experimental results show
its effectiveness and the advantage in natural scenes. For future work, we will
focus on modeling more complex and accessible scene contexts into category
discovery in natural scenes.
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