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Abstract We present a novel algorithm for 3D reconstruc-
tion in this paper, converting incremental 3D reconstruc-
tion to an optimization problem by combining two feature-
enhancing geometric priors and one photometric consis-
tency constraint under the Bayesian learning framework.
Our method first reconstructs an initial 3D model by select-
ing uniformly distributed key images using a view sphere.
Then once a new image is added, we search its correlated
reconstructed patches and incrementally update the result
model by optimizing the geometric and photometric energy
terms. The experimental results illustrate our method is ef-
fective for incremental 3D reconstruction and can be further
applied for large-scale datasets or to real-time reconstruc-
tion.

Keywords Stereo scene analysis · Incremental
reconstruction · Bayesian model · PMVS

1 Introduction

In computer vision, 3D reconstruction has been one of the
widely researched areas in recent decades, and automatic ge-
ometric reconstruction plays a key role in automated intelli-
gent systems [31, 34]. With the decreasing costs of video
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equipments, we now have the opportunity and an urgent
need to run automated and accurate 3D reconstruction al-
gorithms directly on multiple photographs or video clips.
Indeed, the most important technological ingredients to-
wards this goal are already in place. We have known that
feature matching algorithms [6] can provide accurate cor-
respondences, structure-from-motion (SFM) algorithms use
these correspondences to evaluate accurate camera pose, and
multi-view-stereo (MVS) methods finally reconstruct dense
and accurate surface models of complex objects from a mod-
erate number of calibrated images. Actually, the existing
MVS algorithms has nearly achieved the surface coverage
of about 95 % and the depth accuracy of about 0.5 mm
from a set of low resolution (640 × 480) images as reported
[1, 18].

MVS plays an important role in automatic acquisition of
geometric objects. Existing state-of-the-art MVS algorithms
can be roughly categorized into four classes: voxel, mesh,
depth maps and patch based methods. Voxel-based MVS
methods (VMVS) [2–5] represent geometry on a regularly
sampled 3D grid (volume), either as a discrete occupancy
function or a function encoding distance to the closest sur-
face. Algorithms based on deformable polygonal meshes [7,
8] represent a surface as a set of connected planar facets
and operate by iteratively evolving a surface to decrease
or minimize a cost function. Approaches based on multiple
depth maps [9, 10] model a scene as a set of depth maps
and fuse individual depth maps into a single 3D model. Fi-
nally, patch-based MVS (PMVS) [1] algorithms output a
dense collection of small oriented rectangular patches cov-
ering the observed surface obtained from pixel-level corre-
spondences. Recently, CMVS [17] is approved effective in
reconstructing from images of crowed scenes without an ini-
tialization process.
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Fig. 1 The framework of our
incremental reconstruction
system

However, the mentioned methods still face the follow-
ing difficulties. First, they cannot handle incremental recon-
struction tasks well. The input images should be well se-
quenced manually before reconstruction. Moreover, once a
geometric object is obtained, it cannot be incrementally up-
dated when facing a new input view image. Second, the
computational cost of existing methods may rapidly increase
for batch-processing of images, especially in handling huge
numbers of images collected from the Internet, making it
unpractical for real-time applications. Moreover, the meth-
ods also face difficulties when dealing with images of varied
illuminations or scales captured by different users.

In this paper, we propose a novel algorithm aiming at in-
crementally reconstructing a 3D model using the Bayesian
framework. We first select a group of key views uniformly
distributed on our view sphere to create an initial 3D surface
modeled by PMVS as stated above. Then when a new cal-
ibrated image is input, we (1) map it into a triangle on our
view sphere, (2) search the correlated patches with the new
input view, (3) automatically update the initial 3D model
using the photometric consistency constraint and geometric
smoothness priors under the Bayesian inference framework,
and (4) filter patches estimated as outliers according to the
visibility and photometric constraints. Note that once a new
image is added, more geometric details can be extracted and
integrated to incrementally optimize the final 3D model (see
Fig. 1).

Our method has two main contributions. First, we pro-
pose a novel incremental 3D reconstruction framework,
which makes full use of new views to incrementally up-
date and extend an existing 3D model. As a result, the re-
construction process is more efficient and convenient, and
is especially useful for automatic 3D reconstruction from a
large number of real-life images or videos and real-time re-

construction. Second, to our knowledge, no previous work
has attempted to reconstruct 3D dense models using the
Bayesian learning framework, where pixel-level information
and geometric level constraints are well integrated to opti-
mize the final model. As a result, the reconstruction accu-
racy can be effectively improved.

The rest of the paper is organized as follows. Section 2
first introduces the related work. Then Sect. 3 gives details
of our system. Experiments and discussions are shown in
Sect. 4. Finally Sect. 5 concludes our work and the future
improvements.

2 Related work

3D off-line reconstruction from images and video has
achieved an impressive performance as mentioned in Sect. 1.
Comparably, few works focus on incremental reconstruction
from on-line videos or asynchronously input images, which
may appear in many practical applications, such as Robot
navigation, Web-based reconstruction and so on.

The existing efforts on on-line 3D reconstruction can be
roughly categorized into two classes. The first class aims to
compute camera pose and reconstruct spare 3D points in-
crementally for each frame or image. SLAM [21, 22] and
SLAM based methods [20, 32, 33] are powerful techniques
to achieve this target. Actually, these methods were origi-
nally designed to locate camera pose of a camera mounted
on Robots moving around in an unknown scene and obtain
visual odometry or sparse geometry of its surrounding en-
vironment for each frame. [19] extends it to a single un-
controlled camera in a small workspace. As a key compo-
nent, the performance of SFM influences the overall effects.
The development of on-line SFM systems [28, 29] for large
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Fig. 2 (a) The view sphere.
(b) The patch model

scene reconstruction may boost the maturity of such meth-
ods; the other methods use the system of the first class as
a front-end and incrementally construct a global consistent
3D model.

Recently, Merrell et al. [23] and Pollefeys et al. [24] pub-
lished real-time methods using an extended plane sweep-
ing stereo technique to reconstruct a noisy depth map for
each frame and fuse these depth maps to a compact and
dense map. Although having impressive results, the methods
needed hardware GPU and fusing depth maps is performed
at the end, making incremental updating impossible.

Other alternative approaches [25, 26] maintain a global
3D model calculated from sparse 3D feature points via De-
launay triangulation and free-space carving. When new fea-
tures are added, the model is updated according to the free-
space consistency. However, these methods only fuse new
features to such a global model and never improve the older
ones as new images and frame inputs. In addition, the simple
free-space consistency, namely visibility consistency essen-
tially, doesn’t suffice to make use of the new images. More-
over, based only on features from SLAM based system and
lack of extending procedure, the model is relatively sparse.
Recently, another method named ProFORMA [27] was de-
veloped for on-line reconstruction. The system combines a
probabilistic voting scheme and the traditional free-space
constraints to raise the robustness. Nevertheless, the system
also faces the same incremental problem.

3 Our method

In this section, we give our incremental reconstruction algo-
rithm in details. Our method can be briefly summarized as
the following four steps:

1. Map the given multi-view images set Isource to a view
sphere Sinitial and select uniformly distributed key views
to initialize a 3D model;

2. For each new input image inew , map it to Sinitial and
search its related patches set Pupdate on the 3D model;

3. Re-calculate the patches of Pupdate using the Bayesian
learning framework to incrementally refine the 3D model.

4. For all updated patches in Pupdate, check their visibility
and photometric consistency and filter out those patches
estimated as outliers.

Steps 2 to Step 4 are repeated until there are no new input
images. Note that in Step 2, only a subset Pupdate (named
seed patches set) on the previous 3D model is chosen to be
updated for any new input image rather than all the patches
on the model. It is based on the following fact that in each
incremental recursion step, the existing patches on the pre-
vious 3D model may have different correlations to inew and
we need not update those patches having low correlations.
For example, there is no (or too low) correlation between
inew and another patch that is completely invisible to it. This
helps reduce the computational cost, simultaneously without
losing accuracy in our incremental reconstruction. The over-
all frame of the system can be seen in Fig. 1.

3.1 Initialize a 3D model

Given a calibrated image set Isource, we need first select an
image subset uniformly distributed in different viewpoints
to reconstruct an initial 3D model. The initial key views are
selected as follows: (1) map each view image in Isource to
a view sphere Sinitial (see Fig. 2(a)), with its coordinate
determined by the corresponding image plane, namely the
normalized principal axis vector obtained from its projec-
tion matrix, and (2) sample key views uniformly across the
sphere. Note that a point corresponding to a key view on the
sphere actually represents a view image.

Next, we triangulate Sinitial by grouping the neighbor-
ing key views on it into triangles using the Delaunay Tri-
angulation algorithm [11]. 3D patch model S can be simul-
taneously reconstructed using [12] from key views, reflect-
ing an initial geometric contour of the target object. Note
that the geometric contour is reconstructed using the patch-
based approach [1], where a 3D surface is covered by plenty
of patches, and a patch p is essentially a local tangent plane
approximation of the surface. A patch p here has three geo-
metric attributes (see Fig. 2(b)): c(p), n(p) and R(p), where
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c(p) denotes the geometric center, n(p) is the unit normal
vector oriented toward the camera observing it, while a ref-
erence image R(p) is an image chosen from V (p) where p

is truly visible on the condition that the retinal plane of R(p)

is nearly parallel to p within a tiny distortion.
As a result, a triangulated view sphere and a 3D patch

model are obtained as the initializations of our incremental
updating system.

3.2 Search related patches for a new input image

In our incremental reconstruction step, we first search a cor-
responding patch subset from the previous 3D model for any
new input calibrated image, and then extend the subset to
make the model more uniform and well-sampled.

3.2.1 Search seed patches for any input image

To find the seed patches Pupdate for any incrementally input
image inew , we first search a proper triangle T on Sinitial ,
where inew can be mapped into using SIFT [6] as follows:

T ← arg max
T

∑

v∈T

∣∣xv
inew

∣∣ (1)

where xv
inew

is a set of matches between inew and the key
view v corresponding to a vertex in triangle T . Then we
search the correlated patch subset Pupdate from the recon-
structed 3D model by

Pupdate =
⋃

v∈T

{
p
∣∣p ∈ S, visR(p)

}
(2)

Obviously, inew provides more useful reconstruction de-
tails for the patches in Pupdate than those outside it. Then we
update Sinitial as follows: (1) add a new vertex representing
the new image; (2) add a pyramid of triangles by connecting
the new image to three vertices of T , and (3) delete T with
inew located in. As a result, we can simultaneously obtain an
updated view sphere (see inew in Fig. 2(a)).

3.2.2 Extend the seed patches

Next, we extend the patch model to obtain a relatively uni-
form patch density along different viewpoints over the sur-
face. The extension is associated with the orientation of the
new view and the average density of the existing global
surface. Note that during this process, we may create new
patches under local geometric constraints to improve patch
density where patches are too sparse. Our extension has the
following steps:

• Estimate local density Dp for every patch p in 3D model.
We count its neighbors N(p) to evaluate the local density
equivalently as follows:

Fig. 3 Seed patches extension, where Pnew is generated along the line
combining a seed patch P0 and one of its neighbors P1

N(p) = {
p′∣∣p′ ∈ S,

∣∣(c(p) − c
(
p′)) · n(p)

∣∣

+ ∣∣(c(p) − c
(
p′)) · n(

p′)∣∣ < ρ
}

(3)

Dp = ∣∣N(p)
∣∣ (4)

where ρ can be computed relating to the distance at the
depth of the center of c(p) and c(p′) corresponding to
an image displacement of u pixels in R(p) (u = 2 in our
experiment);

• Compute the global average density Dg by averaging all
estimated local densities;

• For every seed patch in Pupdate with its local density less
than 0.5∗Dg , use SMOTE [13] to oversample new ones
whose initialization can be seen in Table 1 between the
seed patch and its neighbors (see Fig. 3). As a result, the
original geometric constraints can be well maintained;

• Add the new patches into Pupdate.

3.3 Incremental surface reconstruction using Bayesian
learning

This subsection introduces the Bayesian model used in our
incremental reconstruction. We aim at discovering the pho-
tometric consistency and geometric smoothness constraints
to obtain high-quality incremental reconstruction results.

Suppose inew is a measurement to our camera from the
real scene modeled by PMVS in our method. Let S be the
real scene to be modeled, we need reconstruct the most
likely surface SMAP given the measurement inew . This can
be achieved by maximizing the Bayesian posterior (MAP)
probability p(S|inew) in the solution space Ω

p(S|inew) = 1

Z
p(inew|S)p(S), S ∈ Ω (5)

SMAP = arg min
(− logp(inew|S) − logp(S)

)
(6)

in order to reduce the parameter dimensions, we constraint
Ω to the expanded patches subset Pupdate as mentioned in
Sect. 3. Note that the constant related to Z is ignored in (6).
p(inew|S) specifies the likelihood of the measurement inew

agreeing with S. In other words, it measures how well the
normal and coordinate of a patch match the real surface ac-
cording to the information hidden in inew and the other cor-
related images. It can be defined by the use of photometric
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Table 1 The incremental
algorithm Input: Sinitial and 3D patch model S reconstructed by PMVS

Output: an improved well-sample, high-resolution and more accurate patch model

While Inputting an image inew

Locate inew in Sinitial and find a corresponding triangle T using SIFT

For any p in the 3D patch model

Np → {p′|p′ ∈ S, |(c(p) − c(p′)) · n(p)| + |(c(p) − c(p′)) · n(p′)| < ρ}
Dp → |N(p)|
Pupdate → ⋃

v∈T {p|v is R(p)}
Update Sinitial

Compute Dg by averaging all local densities

For any p in Pupdate

If Dp < 0.5 ∗ Dg

Generate a new patch k

c(k), n(k) → oversampling method smote(Np, sample-rate,p).

R(k) → R(p)

V (k) → V (p)

Add k into Pupdate

For any patch p in Pupdate

c(p),n(p) ← arg min(λE1 + ζE2 + ηEp), p ∈ Pupdate

Update R(p) and V (p) similar to [1]

Remove outliers {p|p ∈ Pupdate,V (p) < α or Ep > β}
end while

Fig. 4 Geometric smoothness
terms. (a) The blue patch p is
an outlier; however it has a
continuous normal with its
neighboring patches. (b) d(p, v)

is the absolute distance between
two patches p and v along n(p)

discrepancy function [1], which we choose to express the
photometric consistency:

p(inew|S) ∝ exp(−ηEp) (7)

Ep = 1

|S|
∑

p∈S

1

|V (p)| − 1

∑

i∈V (p)/inew

h(p, inew, i) (8)

where η is a control coefficient, and h(p, inew, i) is equal to
one minus the pair-wise normalized cross correlation con-
cerning to the patch projection into images inew and i, re-
spectively.

We use two constraints to define the prior p(S):

p(S) ∝ exp
(−{λE1 + ζE2}

)
(9)

where E1 and E2 are two geometric smoothness energy
terms, and λ, ζ are weighted coefficients. E1 is used to as-
sure the smoothness of the reconstructed surface. For a nat-
ural 3D object, we can model its surface smoothness by ac-

cumulating sub-linear potentials of surface curvature similar
to [14]. Concretely, we define E1 as follows:

E1 = 1

|S|
∑

p∈S

1

|N(p)|
∑

v∈N(p)

f (p, v) (10)

f (p, v) =
√(

n(p) − n(v)
)T (

n(p) − n(v)
)

(11)

where N(p) is the neighboring patches set of p defined in
(3) and f (p, v) is the square-root potential with f (p, v) = 0
if n(p) = n(v) and positive otherwise.

However, there still may exist exceptions even Eq. (10) is
met. For example, in Fig. 4(a), the patch p is an outlier while
having well sub-linear continuous relations with normals of
its neighbors in N(p). Considering although such a patch
has a continuous normal, its geometric location is far away
from the real surface, we use another geometric smoothness
energy term E2 to minimize such error as follows:
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E2 = 1

|S|
∑

p∈S

1

|N(p)|
∑

v∈N(p)

d(p, v) (12)

d(p, v) = ∣∣n(p) · (c(v) − c(p)
)∣∣ (13)

where d(p, v) is the distance between two patches p and v

along n(p) (see Fig. 4(b)).
This minimization problem requires us to adjust c(p) and

n(p) for any patch p in S from the initial value to the final
convergent solution. It is actually a sparse energy minimiza-
tion optimization problem. To simplify the complexity and
reduce the dimension of variables, we constrain c(p) lie on
a ray to assure the projection into R(p) does not change. Si-
multaneously, we model n(p) with Euler angles. Thus for
every patch, only three parameters participate in the opti-
mization problem, greatly reducing the dimension of the so-
lution space and improve stability in the search process. We
use the conjugate gradient descent to solve the global opti-
mization problem. In this process, the derivatives for geo-
metric smoothness prior can be directly computed and those
for the photometric consistency term are currently estimated
numerically.

Considering input images may be similar to each other,
such as adjacent frames from the same video, we need to fur-
ther group those adjacent view images and use each image
group to refine the 3D model, to avoid offering redundant
information and further reduce reconstruction cost. Follow-
ing the intuition, we replace the measurement inew with an
image group Gnew in the Bayesian framework and update
Eq. (8) by

Ep = 1

|S|
∑

p∈S

(
1

|V (p)| − |Gnew|
∑

i∈V (p)−Gnew,
inew∈Gnew

h(p, inew, i)

+ 1

(|Gnew|) · (|Gnew| − 1)/2

×
∑

inew1,inew2∈Gnew,
inew1 �=inew2

h(p, inew1, inew2)

)
(14)

Additionally, we search the Bayesian solution space Ω

or Pupdate for each group. Actually, as mentioned in
Sect. 3.2.1, it follows the intuition that we first search the
proper triangles and the correlated patches for each new
view in Gnew in the same way with Eq. (1) and Eq. (2),
and then the correlated patches in Gnew are actually a union
of these correlated patches, namely

Pupdate =
⋃

inew∈Gnew

Pupdate_inew (15)

where Pupdate_inew is the correlated patches set for each new
image in Gnew obtained by Eq. (2). Note that the intersection
between these correlated patches set is usually of a large
number due to the adjacent views from a video.

3.4 Filter outliers

After refining the model, we finally remove erroneous
patches inconformity to the visibility consistency and photo-
metric consensus. Due to the reasonable initialization from
the 3D model with tough geometric relation before updating,
few patches become outliers caused by bad local minima af-
ter refinement. Here, we handle the photometric consistency
by ignoring the patches with a low photometric score cal-
culated by Eq. (8). As to the visibility consistency, for each
patch p of 3D model, we compare the number of images in
V (p) updated according to a depth-map test similar to [1] to
a preset threshold and filter it out as an outlier. To conclude,
the patches satisfying
{
p|p ∈ Pupdate,V (p) > α,Ep < β

}
(16)

are regarded as reasonable ones and reserved in the final
model. At the same time, in order to improve efficiency, we
perform filtering every three rounds with new images input
gradually.

As a summary, our incremental updating algorithm is
shown in Table 1.

4 Experiments and discussions

We have implemented our incremental reconstruction algo-
rithm on the C++ platform. The datasets [15, 16] used in our
experiments are shown in Table 2, together with the number
of the input images, their approximate sizes, the number of
the key views we choose and the patch number of the recon-
structed initial model using PMVS [12]. In our incremental
processes, we set λ, ζ , η, α and β 0.3, 0.2, 0.7, 4 and 0.25,
respectively. Figure 5 gives our incremental reconstruction
results for these datasets.

In Fig. 5, Column (a) and Column (b) correspond to
example 2D images and their initial result models re-
constructed from key views, respectively. After gradually
adding new images, the result models are incrementally up-
dated, as shown in the rest of the three columns (c)–(e).
It can be seen that the result models can be dynamically
optimized and enriched with more details during these pro-
cesses.

To evaluate our method quantitatively, we adopt the
weighted sum of normalized cross correlations (NCC) Pk

to model the accuracy of a patch k, formulated as

Pk = 1∑
i∈V (k) r(k, i)

∑

i∈V (k)

1 − h(k,R(k), i)

r(k, i)
(17)

r(k, i) is the diameter of a sphere centered at k with the pro-
jected diameter equaling one pixel in i. The weight related
to each visible image in V (k) actually reflects its contribu-
tion to the patch refinement. The measurement indicates the
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Table 2 The datasets used in
our experiments Name Images Image size Key views Initial patches

Toy dinosaur 24 2000 × 1500 15 27267

Morpheus 24 1400 × 1200 15 18433

predator 24 1800 × 1800 15 29620

Soldier 24 1300 × 1400 15 13959

Human skull 24 2000 × 1800 15 45223

temple 312 640 × 480 209 32317

Fig. 5 Our incremental
reconstruction results. (a) 2D
sample images, (b) the initial
3D model, (c)–(e) the
incremental reconstruction
results. From top to bottom, the
datasets are dinosaur, human
skull cast, Morpheus, predator,
soldier and temple
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Fig. 6 The overall statistic
analysis. (a) The ratio of patches
having higher photometric
consistency scores, (b) the
number of extended patches

Table 3 The average accepted
rate of extending patches Datasets Dinosaur Morpheus Human skull Predator Temple Soldier

Accepted rate 86.9 % 90.1 % 91.4 % 89.2 % 96.0 % 91.3 %

Table 4 The average accepted
rate of our filter Datasets Dinosaur Morpheus Human skull Predator Temple Soldier

Accepted rate 93.9 % 95.1 % 96.8 % 93.4 % 97.4 % 94 %

accuracy of one patch k indirectly by estimating its over-
all photometric consistency in V (k), weighing different im-
ages according to their correlations to the patch. Obviously,
the larger the measurement is, the more accurate the patch
is. During each incremental step, we calculate the ratios of
those patches with larger weighted NCC scores in Pupdate

(see Fig. 6) after updating. Figure 6 is a discrete figure where
different points on curves have no relations and can be re-
placed by tables if enough space is available. It can be seen
that after adding a new image, the NCC accuracy of more
than 50 % of its related patches improve averagely, illustrat-
ing the effectiveness of our method.

We also find that in Fig. 6(a), the ratio changes with im-
age quality and position on our view sphere varying dur-
ing the incremental reconstruction steps. It is due to that
geometric smoothness term plays an important role in the
optimization for poor-quality images, and thus the overall
accuracy may be reduced simultaneously because of over-
smoothing.

Figure 6(b) illustrates the number of extended patches in
each incremental reconstruction step with the sample-rate
200 % in our experiments. Obviously, the number greatly
depends on the viewpoint of a 2D image and more patches
are necessary to be generated in sparse regions. Note that not
all extended patches are finally added to the result model

due to the global geometric constraints and the pixel-level
information. Table 3 gives the accepted ratios for extending
patches in our experiments, by averaging the statistical result
of each new image. The performance of our filter is listed
in Table 4, indicating that our system successfully removed
erroneous patches. Note that few patches in our algorithm
are estimated as outliers, showing that the 3D model become
more accurate.

Then we use a bootstrapping-like approach to further
evaluate the bias brought by the selection of key views. For
each dataset, we repeat the overall algorithm 20 times and
thus obtain 20 final 3D models. Note that the selected key
views set is different from each other in each test round due
to random sampling as mentioned in Sect. 3.1. Then we use
the D2 3D matching method [30] to calculate their similari-
ties. Finally, the average similarity AS and variability V are
computed as follows:

AS = 1

190

19∑

i=1

20∑

j=i+1

S(i, j) (18)

V =

√√√√√
1

190

19∑

i=1

20∑

j=i+1

(
S(i, j) − AS

)2 (19)
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Table 5 The average similarity
and variability for each dataset Dataset Dinosaur Morpheus Human skull Predator Soldier Average

Average similarity (AS) 0.878 0.903 0.926 0.895 0.914 0.9032

Variability (V ) 0.071 0.052 0.008 0.083 0.074 0.0576

Fig. 7 The comparison using
different priors. (a) The ratio of
patches having higher
photometric consistency scores
for three methods. (b) The
patches estimated as outliers by
our filter in each incremental
step

where S(i, j) denotes the similarity between two final mod-
els obtained in the ith and j th test round respectively. Note
that a high average similarity or a low variability in gen-
eral indicates the accuracy of the reconstructed 3D mod-
els or the robustness of our algorithm, respectively. The
experimental results for each dataset are listed in Table 5.
From the statistics, we find that either the average simi-
larities or the variabilities for different datasets are good
enough, reflecting the robustness and effectiveness of our
algorithm.

We also compare our methods by adopting different
smoothness combinations as: (1) a uniform prior, (2) only
E1, (3) only E2, and (4) both E1 and E2, on the same dataset
human skull. Note that the uniform prior doesn’t have infor-
mation and contribute to the refinement of patches. Thus the
condition (1) degenerates to the traditional PMVS, which
just updates patches by optimizing the photometric consis-
tency. From the results shown in Fig. 7(a), the traditional
PMVS, namely the condition (1), performs better than the
other three conditions which have almost the same effects
though the prior combining E1 and E2 seems slightly better
with higher ratios of well improved patches. However, due
to the lack of available constraints, it’s easy for a patch to be
trapped in bad local minima in the traditional PMVS, mani-
festing a higher measurement but incongruity to the overall
geometric constrains, namely that many outliers exist in the
traditional PMVS as shown in Fig. 7(b). Figure 7(b) also
shows the method with the two smoothness terms together
generates few outliers after updating than with either E1 or

E2 by avoiding bad local minima effectively using enough
reasonable constraints. The experiments also show that E1

and E2 can complement with each other and work together
to guide the optimization to converge to the optimal solu-
tion.

From the comparison with the traditional PMVS algo-
rithm, we find our method integrates the photometric con-
sistency and geometric prior successfully using the Bayesian
scheme and well improves the entire 3D model by maximiz-
ing the posterior to find a better solution. We also compare
our method with different smoothness terms, and then ver-
ify our right choice for the geometric prior. However, our
method still faces some shortcomings. First, despite easy to
generalize to any scenes, the algorithm is mostly suitable
to model object due to the use of a view sphere and lim-
ited uniform-views images or frames for initialization, un-
available to model large scenes. Additionally, although we
group views and exploit their redundancy to accelerate the
process as mentioned above for videos and similar images,
the method still encounters a large challenge on time com-
plexity because of the global optimization.

5 Conclusions

We propose a novel incremental reconstruction algorithm
for calibrated multi-view stereo in this paper. Our method
first initializes a 3D patch model using selected key views,
and then when a new image is input interactively, seed
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patches for which the new image provides useful recon-
struction details are searched and then extended to make
surface of the 3D target uniform. We finally end up the
incremental learning under Bayesian framework. Exper-
iments on 6 open datasets illustrate the effectiveness of
our method. In addition, we also use a bootstrapping ap-
proach to verify the robustness of our method. Consider-
ing that the selected key views need distribute uniformly on
the view sphere, our future work focuses on reconstruct-
ing crowded scene models directly from real-life videos
in an online and incremental way to get rid of the lim-
itation. Another improvement lies on evaluating differ-
ent 3D reconstruction methods in a more comparable ap-
proach, especially for incremental reconstruction applica-
tions.
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